Module VelusMemory

From Velus Require Import Common.
From Velus Require Import Environment.

From Coq Require Import Setoid Morphisms.
From Coq Require Import List.
Import List.ListNotations.

Set Implicit Arguments.

VelusMemory



Datatype


Definition env := Env.t.

Inductive memory (V: Type) :=
  Mem {
      values: env V;
      instances: env (memory V)
    }.

Operations


Section Operations.

  Variable V W: Type.

  Definition empty_memory : memory V := Mem (Env.empty V) (Env.empty (memory V)).

  Definition find_val (x: ident) (m: memory V) : option V :=
    Env.find x (values m).

  Definition find_inst (x: ident) (m: memory V) : option (memory V) :=
    Env.find x (instances m).

  Definition add_val (x: ident) (v: V) (m: memory V) : memory V :=
    Mem (Env.add x v (values m)) (instances m).

  Definition add_inst (x: ident) (m': memory V) (m: memory V) : memory V :=
    Mem (values m) (Env.add x m' (instances m)).

  Fixpoint mmap (f: V -> W) (m: memory V) : memory W :=
    Mem (Env.map f (values m)) (Env.map (mmap f) (instances m)).

  Definition remove_inst (x: ident) (m: memory V) : memory V :=
    Mem (values m) (Env.remove x (instances m)).

  Definition remove_val (x: ident) (m: memory V) : memory V :=
    Mem (Env.remove x (values m)) (instances m).

End Operations.

Induction Scheme


Section VelusMemoryInd.

  Variable V: Type.
  Variable P: memory V -> Prop.

  Hypothesis MemCase:
    forall m,
      (forall m' x, find_inst x m = Some m' -> P m') ->
      P m.

  Fixpoint memory_ind' (m : memory V): P m.
  Proof.
    unfold find_inst in MemCase.
    destruct m as [? xms].
    apply MemCase; simpl.
    induction xms; intros * Find.
    - rewrite Env.gleaf in Find; discriminate.
    - destruct x; simpl in Find.
      + eapply IHxms2; eauto.
      + eapply IHxms1; eauto.
      + destruct o.
        * symmetry in Find; inv Find. apply memory_ind'.
        * discriminate.
  Qed.

End VelusMemoryInd.

Inductive equal_memory {V: Type} : memory V -> memory V -> Prop :=
  equal_memory_intro:
    forall m m',
      Env.Equal (values m) (values m') ->
      Env.Equiv equal_memory (instances m) (instances m') ->
      equal_memory m m'.

Infix "≋" := equal_memory (at level 70, no associativity).
Infix "⌈≋⌉" := (orel equal_memory) (at level 70, no associativity).

Section EqualVelusMemory.

  Context {V: Type}.

  Lemma equal_memory_refl:
    forall (m: memory V),
      mm.
  Proof.
    induction m as [? IH] using memory_ind'.
    constructor.
    - reflexivity.
    - split.
      + reflexivity.
      + intros * Find ?.
        eapply Env.Props.P.F.MapsTo_fun in Find; eauto.
        rewrite <-Find; eauto.
  Qed.

  Lemma equal_memory_sym:
  forall (m m': memory V),
    mm' -> m' ≋ m.
  Proof.
    induction m as [? IH] using memory_ind'.
    inversion_clear 1 as [?? Vals Insts].
    constructor.
    - now symmetry.
    - destruct Insts as (Insts1 & Insts2); split.
      now symmetry; auto.
      intros k e1 e2 M1 M2.
      eapply Insts2 in M1; eauto.
  Qed.

  Lemma equal_memory_trans:
    forall (m1 m2 m3: memory V),
      m1m2 -> m2m3 -> m1m3.
  Proof.
    induction m1 as [? IH] using memory_ind'.
    inversion_clear 1 as [?? Vals12 Insts12];
      inversion_clear 1 as [?? Vals23 Insts23].
    constructor.
    - now rewrite Vals12.
    - destruct Insts12 as (In12 & HMapsTo12).
      destruct Insts23 as (?& HMapsTo23).
      split.
      + now setoid_rewrite In12.
      + intros * Find1 Find3.
        assert (exists e'', Env.MapsTo k e'' (instances m2)) as (e'' &?).
        { setoid_rewrite Env.Props.P.F.find_mapsto_iff.
          rewrite <-Env.In_find, <-In12, Env.In_find.
          setoid_rewrite <-Env.Props.P.F.find_mapsto_iff; eauto.
        }
      pose proof Find1.
      apply (HMapsTo12 _ _ e'') in Find1; auto.
      apply (HMapsTo23 _ e'') in Find3; eauto.
  Qed.

  Add Relation (memory V) equal_memory
    reflexivity proved by equal_memory_refl
    symmetry proved by equal_memory_sym
    transitivity proved by equal_memory_trans
      as equal_memory_rel.

End EqualVelusMemory.

Global Existing Instance equal_memory_rel.
Global Hint Immediate equal_memory_rel_Reflexive : memory.
Global Hint Immediate equal_memory_rel_Transitive : memory.

Add Parametric Morphism V: (@values V)
    with signature equal_memory ==> Env.Equal
      as values_equal_memory.
Proof.
  intros * E x.
  inversion_clear E as [?? Vals]; now rewrite Vals.
Qed.

Add Parametric Morphism V: (@instances V)
    with signature equal_memory ==> Env.Equiv equal_memory
      as instances_equal_memory.
Proof.
  intros * E.
  inversion_clear E as [??? Insts]; auto.
Qed.

Add Parametric Morphism V x: (@add_inst V x)
    with signature equal_memory ==> equal_memory ==> equal_memory
      as add_inst_equal_memory.
Proof.
  intros ? ? E1 ? ? E2.
  constructor; simpl; rewrite E2.
  + reflexivity.
  + now rewrite E1.
Qed.

Add Parametric Morphism V x: (@add_val V x)
    with signature eq ==> equal_memory ==> equal_memory
      as add_val_equal_memory.
Proof.
  intros * E.
  constructor; simpl; rewrite E; reflexivity.
Qed.

Add Parametric Morphism V x: (@find_val V x)
    with signature equal_memory ==> eq
      as find_val_equal_memory.
Proof.
  intros * E.
  inversion_clear E as [?? Vals].
  apply Vals.
Qed.

Properties


Section Properties.

  Variable V: Type.
  Variables (x y: ident)
            (v: V)
            (m m': memory V).

  Lemma find_val_gss:
    find_val x (add_val x v m) = Some v.
  Proof.
    unfold find_val, add_val.
    now apply Env.gss.
  Qed.

  Lemma find_val_gso:
    x <> y ->
    find_val x (add_val y v m) = find_val x m.
  Proof.
    unfold find_val, add_val.
    now apply Env.gso.
  Qed.

  Lemma find_inst_gss:
      find_inst x (add_inst x m' m) = Some m'.
  Proof.
    unfold find_inst, add_inst.
    now apply Env.gss.
  Qed.

  Lemma find_inst_gso:
    x <> y ->
    find_inst x (add_inst y m' m) = find_inst x m.
  Proof.
    unfold find_inst, add_inst.
    now apply Env.gso.
  Qed.

  Lemma find_val_add_inst:
    find_val x (add_inst y m' m) = find_val x m.
  Proof.
    unfold find_val, add_inst.
    reflexivity.
  Qed.

  Lemma find_inst_add_val:
    find_inst x (add_val y v m) = find_inst x m.
  Proof.
    unfold find_inst, add_val.
    reflexivity.
  Qed.

  Lemma find_val_mmap:
    forall W (f: V -> W),
      find_val x (mmap f m) = option_map f (find_val x m).
  Proof.
    unfold find_val.
    destruct m; simpl.
    intros; apply Env.Props.P.F.map_o.
  Qed.

  Lemma find_inst_mmap:
    forall W (f: V -> W),
      find_inst x (mmap f m) = option_map (mmap f) (find_inst x m).
  Proof.
    unfold find_inst.
    destruct m; simpl.
    intros; apply Env.Props.P.F.map_o.
  Qed.

  Lemma add_remove_inst_same:
    find_inst x m = Some m' ->
    madd_inst x m' (remove_inst x m).
  Proof.
    unfold add_inst, find_inst; intros * Find.
    constructor; simpl.
    - reflexivity.
    - split.
      + setoid_rewrite Env.Props.P.F.add_in_iff;
          setoid_rewrite Env.Props.P.F.remove_in_iff.
        split; intros * Hin.
        * destruct (ident_eq_dec x k); auto.
        * destruct Hin; try tauto.
          subst; apply Env.In_find; eauto.
      + intros * HMapsTo Hremove.
        rewrite Env.Props.P.F.add_mapsto_iff, Env.Props.P.F.remove_mapsto_iff in Hremove.
        destruct Hremove as [(?&?)|(?&?& HMapsTo')].
        * subst.
          apply Env.find_1 in HMapsTo; rewrite HMapsTo in Find; inv Find.
          reflexivity.
        * eapply Env.Props.P.F.MapsTo_fun in HMapsTo as <-; eauto.
          reflexivity.
  Qed.

  Lemma find_inst_grs:
    find_inst x (remove_inst x m) = None.
  Proof.
    intros; apply Env.grs.
  Qed.

  Lemma find_inst_gro:
    x <> y ->
    find_inst x (remove_inst y m) = find_inst x m.
  Proof.
    intros; apply Env.gro; auto.
  Qed.

  Lemma add_remove_val_same:
    find_val x m = Some v ->
    madd_val x v (remove_val x m).
  Proof.
    unfold add_val, find_val; intros * Find.
    constructor; simpl.
    - intro z.
      destruct (ident_eq_dec z x).
      + subst; now rewrite Env.gss.
      + rewrite Env.gso, Env.gro; auto.
    - reflexivity.
  Qed.

  Lemma find_val_grs:
    find_val x (remove_val x m) = None.
  Proof.
    intros; apply Env.grs.
  Qed.

  Lemma find_val_gro:
    x <> y ->
    find_val x (remove_val y m) = find_val x m.
  Proof.
    intros; apply Env.gro; auto.
  Qed.

  Lemma find_inst_gempty:
    find_inst x (empty_memory V) = None.
  Proof.
    apply Env.gempty.
  Qed.

  Lemma find_val_gempty:
    find_val x (empty_memory V) = None.
  Proof.
    apply Env.gempty.
  Qed.

  Lemma add_inst_val_comm:
    add_inst x m' (add_val y v m) = add_val y v (add_inst x m' m).
  Proof eq_refl.

  Lemma add_val_comm:
    forall w,
      x <> y ->
      add_val x v (add_val y w m) = add_val y w (add_val x v m).
  Proof.
    intros; unfold add_val; simpl.
    now rewrite Env.add_comm.
  Qed.

  Lemma In_find_inst:
    forall x (m : memory V),
      Env.In x (instances m) -> exists v, find_inst x m = Some v.
  Proof.
    unfold find_inst. setoid_rewrite Env.In_find; auto.
  Qed.

  Lemma find_inst_In:
    forall x (m : memory V) v,
      find_inst x m = Some v -> Env.In x (instances m).
  Proof.
    unfold find_inst. intros * HH.
    now apply Env.find_In in HH.
  Qed.

  Lemma MapsTo_find_inst:
    forall i (m mi : memory V),
      Env.MapsTo i mi (instances m) <-> find_inst i m = Some mi.
  Proof.
    unfold find_inst. split; intro HH; now apply Env.find_1.
  Qed.

Combined with orel

  Global Instance find_inst_Proper {A : Type}:
    Proper (eq ==> equal_memory ==> orel equal_memory) (@find_inst A).
  Proof.
    intros s t Exy mm mn Emn; subst.
    apply instances_equal_memory in Emn.
    rewrite Env.Equiv_orel in Emn.
    apply Emn.
  Qed.

  Lemma memory_equiv_orel_inst:
    forall (S T : memory V),
      ST ->
      forall x, find_inst x S ⌈≋⌉ find_inst x T.
  Proof.
    intros * EM. now setoid_rewrite EM.
  Qed.

  Lemma memory_equiv_orel_val:
    forall (S T : memory V),
      ST ->
      forall x, orel eq (find_val x S) (find_val x T).
  Proof.
    intros * EM. now setoid_rewrite EM.
  Qed.

  Lemma equal_memory_find_inst:
    forall (M : memory V) N x Mx,
      NM ->
      find_inst x M = Some Mx ->
      exists Nx, find_inst x N = Some Nx /\ NxMx.
  Proof.
    intros * NM Fx.
    apply memory_equiv_orel_inst with (x:=x0) in NM.
    rewrite Fx in NM. inv NM; eauto.
  Qed.

  Lemma orel_find_inst_Some (R : relation (memory V)):
    forall insts x m,
      orel R (find_inst x insts) (Some m) ->
      exists m', R m' m /\ find_inst x insts = Some m'.
  Proof.
    unfold find_inst. eauto using Env.orel_find_Some.
  Qed.

  Lemma orel_find_val_Some (R : relation V):
    forall vals x m,
      orel R (find_val x vals) (Some m) ->
      exists m', R m' m /\ find_val x vals = Some m'.
  Proof.
    unfold find_val. eauto using Env.orel_find_Some.
  Qed.

End Properties.