From Coq Require Import FSets.FMapPositive.
From Coq Require Import FSets.FMapFacts.
From Coq Require Import List.
From Coq Require Import Sorting.Permutation.
From Coq Require Import ZArith.BinInt.
From Coq Require Import Setoid.
From Coq Require Import Relations RelationPairs.
From Coq Require Import Morphisms.
Import ListNotations.
From Coq Require MSets.MSets.
From Coq Require Export PArith.
From Coq Require Import Classes.EquivDec.
From Velus Require Export Common.CommonTactics.
From Velus Require Export Common.CommonList.
From Velus Require Export Common.CommonStreams.
From Velus Require Export Common.CommonPS.
From Coq Require Export PeanoNat.
From Coq Require Export Lia.
Open Scope list.
Common definitions
Finite sets and finite maps
These modules are used to manipulate identifiers.
Definition ident :=
positive.
Module PS :=
Coq.MSets.MSetPositive.PositiveSet.
Module PSP :=
MSetProperties.WPropertiesOn Pos PS.
Module PSF :=
MSetFacts.Facts PS.
Module PSE :=
MSetEqProperties.WEqPropertiesOn Pos PS.
Module PSdec :=
Coq.MSets.MSetDecide.WDecide PS.
Definition ident_eq_dec :=
Pos.eq_dec.
Definition ident_eqb :=
Pos.eqb.
Global Instance:
EqDec ident eq := {
equiv_dec :=
ident_eq_dec }.
Implicit Type i j:
ident.
Properties
Lemma not_or':
forall A B, ~(
A \/
B) <-> ~
A /\ ~
B.
Proof.
split; intuition.
Qed.
Lemma flip_impl:
forall {
P Q :
Prop},
(
P ->
Q) ->
~
Q ->
~
P.
Proof.
intros P Q HPQ HnQ HP. auto. Qed.
Lemma None_eq_dne:
forall {
A} (
v :
option A),
~(
v <>
None) <-> (
v =
None).
Proof.
destruct v; intuition.
exfalso. apply H; discriminate.
Qed.
About identifiers *
Lemma ident_eqb_neq:
forall x y,
ident_eqb x y =
false <->
x <>
y.
Proof.
Lemma ident_eqb_eq:
forall x y,
ident_eqb x y =
true <->
x =
y.
Proof.
Lemma ident_eqb_refl:
forall f,
ident_eqb f f =
true.
Proof.
Lemma ident_eqb_sym:
forall x y,
ident_eqb x y =
ident_eqb y x.
Proof Pos.eqb_sym.
Lemma ident_eq_sym:
forall (
x y:
ident),
x =
y <->
y =
x.
Proof.
now intros; split; subst.
Qed.
Lemma decidable_eq_ident:
forall (
f g:
ident),
Decidable.decidable (
f =
g).
Proof.
Lemma equiv_decb_negb:
forall x, (
x ==
b negb x) =
false.
Proof.
destruct x; simpl; auto. Qed.
Definition mem_ident (
x :
ident):
list ident ->
bool :=
existsb (
fun y =>
ident_eqb y x).
Lemma mem_ident_spec :
forall x xs,
mem_ident x xs =
true <->
In x xs.
Proof.
Definition mem_assoc_ident {
A} (
x:
ident):
list (
ident *
A) ->
bool :=
existsb (
fun y =>
ident_eqb (
fst y)
x).
Lemma mem_assoc_ident_false:
forall {
A}
x xs (
t:
A),
mem_assoc_ident x xs =
false ->
~
In (
x,
t)
xs.
Proof.
Lemma mem_assoc_ident_true:
forall {
A}
x xs,
mem_assoc_ident x xs =
true ->
exists t:
A,
In (
x,
t)
xs.
Proof.
Definition assoc_ident {
A} (
x:
ident) (
xs:
list (
ident *
A)):
option A :=
match find (
fun y =>
ident_eqb (
fst y)
x)
xs with
|
Some (
_,
a) =>
Some a
|
None =>
None
end.
Lemma assoc_ident_true :
forall {
A} (
x:
ident) (
y :
A) (
xs:
list (
ident *
A)),
NoDupMembers xs ->
In (
x,
y)
xs ->
assoc_ident x xs =
Some y.
Proof.
Lemma assoc_ident_false:
forall {
A} (
x:
ident) (
xs:
list (
ident *
A)),
~
InMembers x xs <->
assoc_ident x xs =
None.
Proof.
split.
-
induction xs as [|(?&?)];
auto.
intro nin.
unfold assoc_ident.
cases_eqn EE.
apply find_some in EE as [
Hin Eq].
subst.
simpl in *.
apply ident_eqb_eq in Eq as ->.
exfalso.
apply nin.
destruct Hin as [
H|
H].
inv H.
tauto.
eauto using In_InMembers.
-
induction xs as [|(?&?)];
auto.
intro nin.
apply not_or'.
unfold assoc_ident in *.
simpl in *.
destruct (
ident_eqb i x)
eqn:
EE;
try congruence.
apply ident_eqb_neq in EE.
split;
auto.
Qed.
Lemma assoc_ident_In:
forall {
A} (
x:
ident) (
y :
A) (
xs:
list (
ident *
A)),
assoc_ident x xs =
Some y ->
In (
x,
y)
xs.
Proof.
unfold assoc_ident.
induction xs as [|
a];
intros *
Hassc;
simpl in *.
inv Hassc.
destruct a;
simpl in *;
destruct (
ident_eqb i x)
eqn:
Hident;
simpl in *.
-
inv Hassc.
apply ident_eqb_eq in Hident;
subst;
auto.
-
auto.
Qed.
Module Type IDS.
Parameter bool_id :
ident.
Parameter true_id :
ident.
Parameter false_id :
ident.
Parameter self :
ident.
Parameter out :
ident.
Parameter temp :
ident.
Parameter step :
ident.
Parameter reset :
ident.
Parameter elab :
ident.
Parameter last :
ident.
Parameter switch :
ident.
Parameter local :
ident.
Parameter norm1 :
ident.
Parameter norm2 :
ident.
Parameter obc2c :
ident.
Incremental prefix sets
Definition elab_prefs :=
PS.singleton elab.
Definition last_prefs :=
PS.add last elab_prefs.
Definition switch_prefs :=
PS.add switch last_prefs.
Definition local_prefs :=
PS.add local switch_prefs.
Definition norm1_prefs :=
PS.add norm1 local_prefs.
Definition norm2_prefs :=
PS.add norm2 norm1_prefs.
Definition gensym_prefs := [
elab;
last;
switch;
local;
norm1;
norm2].
Conjecture gensym_prefs_NoDup :
NoDup gensym_prefs.
Parameter default :
ident.
Conjecture reset_not_step:
reset <>
step.
Parameter atom :
ident ->
Prop.
Conjecture self_atom :
atom self.
Conjecture out_atom :
atom out.
Conjecture temp_atom :
atom temp.
Conjecture step_atom :
atom step.
Conjecture reset_atom :
atom reset.
Conjecture elab_atom :
atom elab.
Conjecture last_atom :
atom last.
Conjecture switch_atom :
atom switch.
Conjecture local_atom :
atom local.
Conjecture norm1_atom :
atom norm1.
Conjecture norm2_atom :
atom norm2.
Conjecture obc2c_atom :
atom obc2c.
Name generation by prefixing
Parameter prefix :
ident ->
ident ->
ident.
Conjecture prefix_not_atom:
forall pref id,
~
atom (
prefix pref id).
Conjecture prefix_injective:
forall pref id pref'
id',
prefix pref id =
prefix pref'
id' ->
pref =
pref' /\
id =
id'.
Name generation with fresh identifiers
Parameter gensym :
ident -> (
option ident) ->
ident ->
ident.
Conjecture gensym_not_atom:
forall pref hint x,
~
atom (
gensym pref hint x).
Conjecture gensym_injective:
forall pref hint x pref'
hint'
x',
gensym pref hint x =
gensym pref'
hint'
x' ->
pref =
pref' /\
x =
x'.
Definition AtomOrGensym (
prefs :
PS.t) (
id :
ident) :=
atom id \/
PS.Exists (
fun pre =>
exists n hint,
id =
gensym pre hint n)
prefs.
End IDS.
Generalizable Variables A.
Lemma equiv_decb_equiv:
forall `{
EqDec A} (
x y :
A),
equiv_decb x y =
true <->
equiv x y.
Proof.
Lemma nequiv_decb_false:
forall {
A} `{
EqDec A} (
x y:
A),
(
x <>
b y) =
false <-> (
x ==
b y) =
true.
Proof.
Lemma equiv_decb_refl:
forall `{
EqDec A} (
x:
A),
equiv_decb x x =
true.
Proof.
Lemma nequiv_decb_refl:
forall x, (
x <>
b x) =
false.
Proof.
Lemma not_equiv_decb_equiv:
forall `{
EqDec A} (
x y:
A),
equiv_decb x y =
false <-> ~(
equiv x y).
Proof.
Lemma nequiv_decb_true:
forall {
A R} `{
EqDec A R} (
x y :
A),
(
x <>
b y) =
true <-> (
x =/=
y).
Proof.
Lemma not_in_filter_nequiv_decb:
forall y xs,
~
In y xs ->
filter (
nequiv_decb y)
xs =
xs.
Proof.
induction xs as [|
x xs IH];
auto.
intro Ny.
apply not_in_cons in Ny as (
Ny1 &
Ny2).
simpl.
apply nequiv_decb_true in Ny1 as ->.
now apply IH in Ny2 as ->.
Qed.
Lemma forall2b_Forall2_equiv_decb:
forall {
A R} `{
EqDec A R} (
xs ys :
list A),
forall2b equiv_decb xs ys =
true ->
Forall2 R xs ys.
Proof.
Definition equiv_decb3 {
A R} `{
EqDec A R} (
x y z :
A) :
bool :=
(
x ==
b y) && (
y ==
b z).
Lemma equiv_decb3_equiv:
forall {
A R} `{
EqDec A R}
x y z,
(
equiv_decb3 x y z =
true) <-> (
x ===
y /\
y ===
z).
Proof.
Lemma forall3b_equiv_decb3:
forall {
A R} `{
EqDec A R}
xs ys zs,
forall3b equiv_decb3 xs ys zs =
true ->
Forall2 R xs ys /\
Forall2 R ys zs.
Proof.
Lemma forallb_forall2b_equiv_decb :
forall {
A R} `{
EqDec A R} (
xs :
list (
list A)) (
ys :
list A),
forallb (
fun xs =>
forall2b equiv_decb xs ys)
xs =
true ->
Forall (
fun xs =>
Forall2 R xs ys)
xs.
Proof.
About Coq stdlib
Lemma pos_le_plus1:
forall x, (
x <=
x + 1)%
positive.
Proof.
Lemma pos_lt_plus1:
forall x, (
x <
x + 1)%
positive.
Proof.
Lemma not_None_is_Some:
forall A (
x :
option A),
x <>
None <-> (
exists v,
x =
Some v).
Proof.
destruct x; intuition.
exists a; reflexivity.
discriminate.
match goal with H:exists _, _ |- _ => destruct H end; discriminate.
Qed.
Corollary not_None_is_Some_Forall:
forall {
A} (
xs:
list (
option A)),
Forall (
fun (
v:
option A) => ~
v =
None)
xs ->
exists ys,
xs =
map Some ys.
Proof.
induction 1
as [|??
E].
-
exists [];
simpl;
eauto.
-
rewrite not_None_is_Some in E.
destruct E as (
v,
E).
destruct IHForall as (
vs & ?);
subst.
exists (
v ::
vs);
simpl;
eauto.
Qed.
Lemma not_Some_is_None:
forall A (
x :
option A), (
forall v,
x <>
Some v) <->
x =
None.
Proof.
destruct x; intuition.
- exfalso; now apply (H a).
- discriminate.
- discriminate.
Qed.
Lemma Nat2Z_inj_pow:
forall m n,
Z.of_nat (
n ^
m) =
Zpower.Zpower_nat (
Z.of_nat n)
m.
Proof.
Section IsNoneSome.
Context {
A :
Type}.
Definition isNone (
o :
option A) :
bool :=
match o with None =>
true |
Some _ =>
false end.
Definition isSome (
o :
option A) :
bool :=
match o with None =>
false |
Some _ =>
true end.
Lemma isSome_true:
forall (
v :
option A),
isSome v =
true <->
exists v',
v =
Some v'.
Proof.
destruct v; simpl; split; intro; eauto; try discriminate.
now take (exists v', _) and destruct it.
Qed.
Lemma isSome_false:
forall (
v :
option A),
isSome v =
false <->
v =
None.
Proof.
destruct v; simpl; split; intro; eauto; try discriminate.
Qed.
End IsNoneSome.
Miscellaneous
Lemma relation_equivalence_subrelation:
forall {
A} (
R1 R2 :
relation A),
relation_equivalence R1 R2 <-> (
subrelation R1 R2 /\
subrelation R2 R1).
Proof.
types and clocks
Section TypesAndClocks.
Context {
type clock :
Type}.
Definition idty :
list (
ident * (
type *
clock)) ->
list (
ident *
type) :=
map (
fun xtc => (
fst xtc,
fst (
snd xtc))).
Definition idck :
list (
ident * (
type *
clock)) ->
list (
ident *
clock) :=
map (
fun xtc => (
fst xtc,
snd (
snd xtc))).
Lemma idty_app:
forall xs ys,
idty (
xs ++
ys) =
idty xs ++
idty ys.
Proof.
induction xs; auto.
simpl; intro; now rewrite IHxs.
Qed.
Lemma InMembers_idty:
forall x xs,
InMembers x (
idty xs) <->
InMembers x xs.
Proof.
induction xs as [|x' xs]; split; auto; intro HH;
destruct x' as (x' & tyck); simpl.
- rewrite <-IHxs; destruct HH; auto.
- rewrite IHxs. destruct HH; auto.
Qed.
Lemma NoDupMembers_idty:
forall xs,
NoDupMembers (
idty xs) <->
NoDupMembers xs.
Proof.
induction xs as [|
x xs];
split;
inversion_clear 1;
eauto using NoDupMembers_nil;
destruct x as (
x &
tyck);
simpl in *;
constructor;
try rewrite InMembers_idty in *;
try rewrite IHxs in *;
auto.
Qed.
Lemma map_fst_idty:
forall xs,
map fst (
idty xs) =
map fst xs.
Proof.
induction xs; simpl; try rewrite IHxs; auto.
Qed.
Lemma length_idty:
forall xs,
length (
idty xs) =
length xs.
Proof.
induction xs as [|x xs]; auto.
destruct x; simpl. now rewrite IHxs.
Qed.
Lemma In_idty_exists:
forall x (
ty :
type)
xs,
In (
x,
ty) (
idty xs) <->
exists (
ck:
clock),
In (
x, (
ty,
ck))
xs.
Proof.
induction xs as [|x' xs].
- split; inversion_clear 1. inv H0.
- split.
+ inversion_clear 1 as [HH|HH];
destruct x' as (x' & ty' & ck'); simpl in *.
* inv HH; eauto.
* apply IHxs in HH; destruct HH; eauto.
+ destruct 1 as (ck & HH).
inversion_clear HH as [Hin|Hin].
* subst; simpl; auto.
* constructor 2; apply IHxs; eauto.
Qed.
Lemma idty_InMembers:
forall x ty (
xs :
list (
ident * (
type *
clock))),
In (
x,
ty) (
idty xs) ->
InMembers x xs.
Proof.
intros *
Ix.
unfold idty in Ix.
apply in_map_iff in Ix as ((
y, (
yt,
yc)) &
Dy &
Iy).
inv Dy.
apply In_InMembers with (1:=
Iy).
Qed.
Global Instance idty_Permutation_Proper:
Proper (@
Permutation (
ident * (
type *
clock))
==> @
Permutation (
ident *
type))
idty.
Proof.
intros xs ys Hperm.
unfold idty.
rewrite Hperm.
reflexivity.
Qed.
Lemma idck_app:
forall xs ys,
idck (
xs ++
ys) =
idck xs ++
idck ys.
Proof.
induction xs; auto.
simpl; intro; now rewrite IHxs.
Qed.
Lemma InMembers_idck:
forall x xs,
InMembers x (
idck xs) <->
InMembers x xs.
Proof.
induction xs as [|x' xs]; split; auto; intro HH;
destruct x' as (x' & tyck); simpl.
- rewrite <-IHxs; destruct HH; auto.
- rewrite IHxs. destruct HH; auto.
Qed.
Lemma NoDupMembers_idck:
forall xs,
NoDupMembers (
idck xs) <->
NoDupMembers xs.
Proof.
induction xs as [|
x xs];
split;
inversion_clear 1;
eauto using NoDupMembers_nil;
destruct x as (
x &
tyck);
simpl in *;
constructor;
try rewrite InMembers_idck in *;
try rewrite IHxs in *;
auto.
Qed.
Lemma map_fst_idck:
forall xs,
map fst (
idck xs) =
map fst xs.
Proof.
induction xs; simpl; try rewrite IHxs; auto.
Qed.
Lemma length_idck:
forall xs,
length (
idck xs) =
length xs.
Proof.
induction xs as [|x xs]; auto.
destruct x; simpl. now rewrite IHxs.
Qed.
Lemma In_idck_exists:
forall x (
ck :
clock)
xs,
In (
x,
ck) (
idck xs) <->
exists (
ty:
type),
In (
x, (
ty,
ck))
xs.
Proof.
induction xs as [|x' xs].
- split; inversion_clear 1. inv H0.
- split.
+ inversion_clear 1 as [HH|HH];
destruct x' as (x' & ty' & ck'); simpl in *.
* inv HH; eauto.
* apply IHxs in HH; destruct HH; eauto.
+ destruct 1 as (ty & HH).
inversion_clear HH as [Hin|Hin].
* subst; simpl; auto.
* constructor 2; apply IHxs; eauto.
Qed.
Global Instance idck_Permutation_Proper:
Proper (
Permutation (
A:=(
ident * (
type *
clock)))
==>
Permutation (
A:=(
ident *
clock)))
idck.
Proof.
intros xs ys Hperm.
unfold idck.
rewrite Hperm.
reflexivity.
Qed.
Lemma filter_fst_idck:
forall (
xs:
list (
ident * (
type *
clock)))
P,
idck (
filter (
fun x =>
P (
fst x))
xs) =
filter (
fun x =>
P (
fst x)) (
idck xs).
Proof.
induction xs; simpl; intros; auto.
cases; simpl; now rewrite IHxs.
Qed.
End TypesAndClocks.
Global Hint Unfold idty idck :
list.
Lemma In_of_list :
forall xs x,
PS.In x (
PSP.of_list xs) <->
In x xs.
Proof.
Corollary In_of_list_InMembers:
forall {
A}
x (
xs :
list (
ident *
A)),
PS.In x (
PSP.of_list (
map fst xs)) <->
InMembers x xs.
Proof.
Useful functions on lists of options
Section OptionLists.
Context {
A B :
Type}.
Definition omap (
f :
A ->
option B) :
list A ->
option (
list B) :=
fold_right (
fun x ys =>
match f x,
ys with
|
Some y,
Some ys =>
Some (
y ::
ys)
|
_,
_ =>
None
end) (
Some []).
Definition ofold_right (
f :
A ->
B ->
option B) :
option B ->
list A ->
option B :=
fold_right (
fun x acc =>
match acc with
|
Some acc =>
f x acc
|
None =>
None
end).
Definition ofold_left (
f :
B ->
A ->
option B) :
list A ->
option B ->
option B :=
fold_left (
fun acc x =>
match acc with
|
Some acc =>
f acc x
|
None =>
None
end).
Lemma ofold_right_none_none:
forall (
f :
A ->
B ->
option B)
xs,
ofold_right f None xs =
None.
Proof.
induction xs; simpl; auto. now rewrite IHxs.
Qed.
End OptionLists.
Definition or_default {
A} (
d:
A) (
o:
option A) :
A :=
match o with Some a =>
a |
None =>
d end.
Definition or_default_with {
A B} (
d:
B) (
f:
A ->
B) (
o:
option A) :
B :=
match o with Some a =>
f a |
None =>
d end.
Lift relations into the option type
Section ORel.
Context {
A :
Type}
(
R :
relation A).
Inductive orel :
relation (
option A) :=
|
Oreln :
orel None None
|
Orels :
forall sx sy,
R sx sy ->
orel (
Some sx) (
Some sy).
Global Instance orel_refl `{
RR :
Reflexive A R} :
Reflexive orel.
Proof.
intro sx.
destruct sx; constructor; auto.
Qed.
Global Instance orel_trans `{
RT :
Transitive A R} :
Transitive orel.
Proof.
intros sx sy sz XY YZ.
inv XY; inv YZ; try discriminate; constructor.
transitivity sy0; auto.
Qed.
Global Instance orel_sym `{
RS :
Symmetric A R} :
Symmetric orel.
Proof.
intros sx sy XY. inv XY; constructor; symmetry; auto.
Qed.
Global Instance orel_equiv `{
Equivalence A R} :
Equivalence orel.
Proof.
Global Instance orel_preord `{
PreOrder A R} :
PreOrder orel.
Proof.
Global Instance orel_Some_Proper:
Proper (
R ==>
orel)
Some.
Proof.
intros x y Rxy. right. eauto.
Qed.
Global Instance orel_Proper `{
Symmetric A R} `{
Transitive A R} :
Proper (
orel ==>
orel ==>
iff)
orel.
Proof.
intros ox1 ox2 ORx oy1 oy2 ORy.
split; intro HH.
- symmetry in ORx. transitivity ox1; auto. transitivity oy1; auto.
- symmetry in ORy. transitivity ox2; auto. transitivity oy2; auto.
Qed.
Lemma orel_inversion:
forall x y,
orel (
Some x) (
Some y) <->
R x y.
Proof.
split.
-
now inversion 1.
-
intro Rxy.
eauto using orel.
Qed.
End ORel.
Arguments orel {
A}%
type R%
signature.
Global Hint Constructors orel :
datatypes.
Global Hint Extern 5 (
orel _ ?
x ?
x) =>
reflexivity :
datatypes.
Lemma orel_eq {
A :
Type} :
forall x y,
orel (@
eq A)
x y <->
x =
y.
Proof.
intros x y. destruct x, y; split; intro HH; try discriminate; inv HH; auto with datatypes.
Qed.
Lemma orel_eq_weaken:
forall {
A}
R `{
Reflexive A R} (
x y :
option A),
x =
y ->
orel R x y.
Proof.
now intros A R RR x y Exy; subst.
Qed.
Global Instance orel_option_map_Proper
{
A B} (
RA :
relation A) (
RB :
relation B) `{
Equivalence B RB}:
Proper ((
RA ==>
RB) ==>
orel RA ==>
orel RB) (@
option_map A B).
Proof.
intros f' f Ef oa' oa Eoa.
destruct oa'; destruct oa; simpl; inv Eoa; auto with datatypes.
Qed.
Global Instance orel_option_map_pointwise_Proper
{
A B} (
RA :
relation A) (
RB :
relation B)
`{
Equivalence B RB}:
Proper (
pointwise_relation A RB ==>
eq ==>
orel RB) (@
option_map A B).
Proof.
intros f'
f Hf oa'
oa Eoa;
subst.
destruct oa;
simpl; [|
reflexivity].
apply orel_inversion.
rewrite Hf.
reflexivity.
Qed.
Global Instance orel_subrelation {
A} (
R1 R2 :
relation A) `{
subrelation A R1 R2}:
subrelation (
orel R1) (
orel R2).
Proof.
intros xo yo Ro.
destruct xo, yo; inv Ro; constructor; auto.
Qed.
Lemma orel_pair:
forall {
A B} (
RA:
relation A) (
RB:
relation B)
a1 a2 b1 b2,
RA a1 a2 ->
RB b1 b2 ->
orel (
RelationPairs.RelProd RA RB) (
Some (
a1,
b1)) (
Some (
a2,
b2)).
Proof.
intros until b2. intros Ea Eb.
constructor; auto.
Qed.
Global Instance orel_subrelation_Proper {
A}:
Proper (@
subrelation A ==>
eq ==>
eq ==>
Basics.impl)
orel.
Proof.
intros R2 R1 HR ox2 ox1 ORx oy2 oy1 ORy HH; subst.
destruct ox1, oy1; inv HH; auto with datatypes.
Qed.
Global Instance orel_equivalence_Proper {
A}:
Proper (@
relation_equivalence A ==>
eq ==>
eq ==>
iff)
orel.
Proof.
intros R2 R1 HR ox2 ox1 ORx oy2 oy1 ORy;
subst.
apply relation_equivalence_subrelation in HR as (
HR1 &
HR2).
split;
intro HH.
now setoid_rewrite <-
HR1.
now setoid_rewrite <-
HR2.
Qed.
Global Program Instance orel_EqDec {
A R} `{
EqDec A R} :
EqDec (
option A) (
orel R) :=
{
equiv_dec :=
fun xo yo =>
match xo,
yo with
|
None,
None =>
left _
|
Some x,
Some y =>
match x ==
y with
|
left _ =>
left _
|
right _ =>
right _
end
|
_,
_ =>
right _
end }.
Next Obligation.
constructor; auto. Qed.
Next Obligation.
constructor; auto. Qed.
Next Obligation.
inv H0; auto. Qed.
Next Obligation.
inv H1; eauto. eapply H0; eauto. Qed.
Next Obligation.
split. intros ?? (?&?); congruence. intros (?&?); congruence. Qed.
Next Obligation.
split. intros ?? (?&?); congruence. intros (?&?); congruence. Qed.
Lift boolean relations into the option type
Section ORelB.
Context {
A :
Type}
(
f :
A ->
A ->
bool).
Definition orelb (
x y :
option A) :=
match x,
y with
|
None,
None =>
true
|
Some x,
Some y =>
f x y
|
_,
_ =>
false
end.
Lemma orelb_orel :
forall R x y,
(
forall x y,
f x y =
true <->
R x y) ->
orelb x y =
true <->
orel R x y.
Proof.
intros * Heq.
destruct x, y; simpl.
- rewrite Heq; split; intros.
constructor; auto. inv H; auto.
- split; intros. 1,2:inv H.
- split; intros. 1,2:inv H.
- split; intros. 1,2:constructor.
Qed.
End ORelB.
Lift relations between elements of different types into the option type
Section ORel2.
Context {
A B :
Type}
(
R :
A ->
B ->
Prop).
Inductive orel2 :
option A ->
option B ->
Prop :=
|
Orel2n :
orel2 None None
|
Orel2s :
forall sx sy,
R sx sy ->
orel2 (
Some sx) (
Some sy).
Lemma orel2_inversion:
forall x y,
orel2 (
Some x) (
Some y) <->
R x y.
Proof.
split.
-
now inversion 1.
-
intro Rxy.
eauto using orel2.
Qed.
End ORel2.
The option monad
Definition obind {
A B:
Type} (
f:
option A) (
g:
A ->
option B) :
option B :=
match f with
|
Some x =>
g x
|
None =>
None
end.
Definition obind2 {
A B C:
Type} (
f:
option (
A *
B)) (
g:
A ->
B ->
option C) :
option C :=
match f with
|
Some (
x,
y) =>
g x y
|
None =>
None
end.
Declare Scope option_monad_scope.
Notation "'
do'
X <-
A ;
B" := (
obind A (
fun X =>
B))
(
at level 200,
X name,
A at level 100,
B at level 200)
:
option_monad_scope.
Notation "'
do' (
X ,
Y ) <-
A ;
B" := (
obind2 A (
fun X Y =>
B))
(
at level 200,
X name,
Y name,
A at level 100,
B at level 200)
:
option_monad_scope.
Remark obind_inversion:
forall (
A B:
Type) (
f:
option A) (
g:
A ->
option B) (
y:
B),
obind f g =
Some y ->
exists x,
f =
Some x /\
g x =
Some y.
Proof.
intros until y. destruct f; simpl; intros.
exists a; auto. discriminate.
Qed.
Remark obind2_inversion:
forall {
A B C:
Type} (
f:
option (
A*
B)) (
g:
A ->
B ->
option C) (
z:
C),
obind2 f g =
Some z ->
exists x,
exists y,
f =
Some (
x,
y) /\
g x y =
Some z.
Proof.
intros until z. destruct f; simpl.
destruct p; simpl; intros. exists a; exists b; auto.
intros; discriminate.
Qed.
Local Open Scope option_monad_scope.
Remark omap_inversion:
forall (
A B:
Type) (
f:
A ->
option B) (
l:
list A) (
l':
list B),
omap f l =
Some l' ->
Forall2 (
fun x y =>
f x =
Some y)
l l'.
Proof.
induction l;
simpl;
intros.
inversion_clear H.
constructor.
destruct (
f a)
eqn:
Hfa; [|
discriminate].
destruct (
omap f l);
inversion_clear H.
constructor;
auto.
Qed.
The
omonadInv H tactic below simplifies hypotheses of the form
H: (do x <- a; b) = OK res
By definition of the obind operation, both computations
a and
b must succeed for their composition to succeed. The tactic
therefore generates the following hypotheses:
x: ...
H1: a = OK x
H2: b x = OK res
Ltac omonadInv1 H :=
match type of H with
| (
Some _ =
Some _) =>
inversion H;
clear H;
try subst
| (
None =
Some _) =>
discriminate
| (
obind ?
F ?
G =
Some ?
X) =>
let x :=
fresh "
x"
in (
let EQ1 :=
fresh "
EQ"
in (
let EQ2 :=
fresh "
EQ"
in (
destruct (
obind_inversion F G H)
as (
x &
EQ1 &
EQ2);
clear H;
try (
omonadInv1 EQ2))))
| (
obind2 ?
F ?
G =
Some ?
X) =>
let x1 :=
fresh "
x"
in (
let x2 :=
fresh "
x"
in (
let EQ1 :=
fresh "
EQ"
in (
let EQ2 :=
fresh "
EQ"
in (
destruct (
obind2_inversion F G H)
as (
x1 &
x2 &
EQ1 &
EQ2);
clear H;
try (
omonadInv1 EQ2)))))
| (
match ?
X with left _ =>
_ |
right _ =>
None end =
Some _) =>
destruct X; [
try (
omonadInv1 H) |
discriminate]
| (
match (
negb ?
X)
with true =>
_ |
false =>
None end =
Some _) =>
destruct X as []
eqn:?; [
discriminate |
try (
omonadInv1 H)]
| (
match ?
X with true =>
_ |
false =>
None end =
Some _) =>
destruct X as []
eqn:?; [
try (
omonadInv1 H) |
discriminate]
| (
omap ?
F ?
L =
Some ?
M) =>
generalize (
omap_inversion F L H);
intro
end.
Ltac omonadInv H :=
omonadInv1 H ||
match type of H with
| (?
F _ _ _ _ _ _ _ _ =
Some _) =>
((
progress simpl in H) ||
unfold F in H);
omonadInv1 H
| (?
F _ _ _ _ _ _ _ =
Some _) =>
((
progress simpl in H) ||
unfold F in H);
omonadInv1 H
| (?
F _ _ _ _ _ _ =
Some _) =>
((
progress simpl in H) ||
unfold F in H);
omonadInv1 H
| (?
F _ _ _ _ _ =
Some _) =>
((
progress simpl in H) ||
unfold F in H);
omonadInv1 H
| (?
F _ _ _ _ =
Some _) =>
((
progress simpl in H) ||
unfold F in H);
omonadInv1 H
| (?
F _ _ _ =
Some _) =>
((
progress simpl in H) ||
unfold F in H);
omonadInv1 H
| (?
F _ _ =
Some _) =>
((
progress simpl in H) ||
unfold F in H);
omonadInv1 H
| (?
F _ =
Some _) =>
((
progress simpl in H) ||
unfold F in H);
omonadInv1 H
end.
Section OptionReasoning.
Context {
A B C :
Type}.
Global Add Parametric Morphism
{
RA :
relation A} {
RB :
relation (
option B)} `{
Reflexive _ RB} :
obind
with signature (
orel RA ==> (
RA ==>
RB) ==>
RB)
as obind_orel_ho.
Proof.
intros oa1 oa2 Eoa f1 f2 Ef.
destruct oa1 as [a1|]; inv Eoa; auto.
now take (RA _ _) and specialize (Ef _ _ it).
Qed.
Global Add Parametric Morphism (
RB :
relation (
option B)) `{
Reflexive _ RB} :
obind
with signature (@
eq (
option A) ==> (
pointwise_relation A RB) ==>
RB)
as obind_pointwise.
Proof.
intros f g1 g2 PW.
destruct f; simpl; auto.
Qed.
Global Add Parametric Morphism
(
RA :
relation A) (
RB :
relation B) (
RC :
relation (
option C))
`{
Reflexive _ RC} :
obind2
with signature (
orel (
RA *
RB) ==> (
RA ==>
RB ==>
RC) ==>
RC)
as obind2_orel_ho.
Proof.
intros oa1 oa2 Eoa f1 f2 Ef.
destruct oa1 as [(
a1,
b1)|];
inv Eoa;
auto.
take (
A *
B)%
type and destruct it.
take ((
RA *
RB)%
signature _ _)
and destruct it as (
HA &
HB).
specialize (
Ef _ _ HA _ _ HB).
auto.
Qed.
Lemma orel_obind_intro:
forall (
RA:
relation A) {
RB:
relation B}
{
oa1 oa2 :
option A} {
f1 f2 :
A ->
option B},
orel RA oa1 oa2 ->
(
forall a1 a2,
oa1 =
Some a1 ->
oa2 =
Some a2 ->
RA a1 a2 ->
orel RB (
f1 a1) (
f2 a2)) ->
orel RB (
obind oa1 f1) (
obind oa2 f2).
Proof.
intros * Ha Hf.
destruct oa1 as [a1|]; inv Ha; simpl; auto with datatypes.
Qed.
Lemma orel_obind_intro_eq:
forall {
RB:
relation B} {
oa1 oa2 :
option A} {
f1 f2 :
A ->
option B},
oa1 =
oa2 ->
(
forall a,
oa1 =
Some a ->
oa2 =
Some a ->
orel RB (
f1 a) (
f2 a)) ->
orel RB (
obind oa1 f1) (
obind oa2 f2).
Proof.
intros *
Ha Hf.
apply orel_obind_intro with (
RA:=
eq);
subst; [
reflexivity|].
intros a1 a2 Ha H2.
destruct oa2;
try discriminate.
repeat match goal with H:
Some _ =
Some _ |-
_ =>
inv H end;
auto.
Qed.
Lemma orel_obind_intro_same:
forall {
RB:
relation B} {
oa :
option A} {
f1 f2 :
A ->
option B},
(
forall a,
oa =
Some a ->
orel RB (
f1 a) (
f2 a)) ->
orel RB (
obind oa f1) (
obind oa f2).
Proof.
intros *
Hf.
apply (
orel_obind_intro eq); [
reflexivity|].
intros *
a Haa;
subst;
inversion Haa;
subst.
auto.
Qed.
Lemma orel_obind_inversion
(
RA :
relation A) `{
Reflexive A RA}
{
RB :
relation B} `{
Equivalence B RB}
{
g} `{
Proper _ (
RA ==>
orel RB)
g} :
forall f q,
orel RB (
obind f g) (
Some q)
<-> (
exists p,
orel RA f (
Some p) /\
orel RB (
g p) (
Some q)).
Proof.
intros f q;
split; [
intro HH|
intros (
p &
Hf &
Hg)].
2:
now setoid_rewrite Hf.
inversion HH as [|
q'
q''
Rq Ms];
subst;
clear HH.
symmetry in Ms.
apply obind_inversion in Ms as (
p & -> &
Hg).
apply (
orel_eq_weaken RB)
in Hg.
setoid_rewrite Rq in Hg.
exists p;
split;
auto with datatypes.
Qed.
Global Arguments orel_obind_inversion RA%
signature {
_} {
RB}%
signature {
_ _ _}.
Lemma ofold_right_altdef:
forall (
f :
A ->
B ->
option B)
xs acc,
ofold_right f acc xs =
fold_right (
fun x acc =>
obind acc (
f x))
acc xs.
Proof.
reflexivity. Qed.
Lemma ofold_right_cons:
forall (
f :
A ->
B ->
option B)
x xs acc,
ofold_right f acc (
x::
xs) =
obind (
ofold_right f acc xs) (
f x).
Proof.
reflexivity. Qed.
Global Instance ofold_right_Proper (
RA:
relation A) (
RB:
relation B):
Proper ((
RA ==>
RB ==>
orel RB)
==>
orel RB ==>
SetoidList.eqlistA RA ==>
orel RB)
ofold_right.
Proof.
intros f1 f2 Ef a1 a2 RBa xs1 xs2 RAxs.
revert xs2 RAxs;
induction xs1;
intros xs2;
inversion 1;
subst;
auto.
inv RAxs.
simpl.
take (
SetoidList.eqlistA _ _ _)
and specialize (
IHxs1 _ it).
destruct (
ofold_right f1 a1 xs1);
inv IHxs1;
auto with datatypes.
now apply Ef.
Qed.
Global Instance omap_Proper (
RA:
relation A):
Proper ((
RA ==>
orel RA) ==>
SetoidList.eqlistA RA
==>
orel (
SetoidList.eqlistA RA))
omap.
Proof.
intros f'
f Ef xs'
xs Exs.
induction Exs;
simpl.
now constructor.
take (
RA x x')
and pose proof (
Ef _ _ it)
as Efx.
destruct (
f'
x);
inv Efx;
auto with datatypes.
destruct (
omap f'
l);
inv IHExs;
auto with datatypes.
Qed.
Global Instance omap_Proper_pointwise (
RA:
relation A):
Proper (
pointwise_relation A (
orel RA) ==>
eq
==>
orel (
SetoidList.eqlistA RA))
omap.
Proof.
intros f'
f Ef xs'
xs Exs;
subst.
induction xs.
now constructor.
simpl.
specialize (
Ef a).
destruct (
f'
a);
inv Ef;
auto with datatypes.
destruct (
omap f'
xs);
inv IHxs;
auto with datatypes.
Qed.
Lemma orel_omap:
forall (
f g :
A ->
option B)
xs,
(
forall x,
orel eq (
f x) (
g x)) ->
orel eq (
omap f xs) (
omap g xs).
Proof.
intros f g xs HH.
induction xs;
simpl.
now rewrite orel_inversion.
specialize (
HH a).
destruct (
f a);
inv HH;
auto with datatypes.
destruct (
omap f xs);
inv IHxs;
auto with datatypes.
Qed.
Lemma orel_omap_eqlistA (
RB :
relation B) :
forall f g (
xs :
list A),
(
forall x,
orel RB (
f x) (
g x)) ->
orel (
SetoidList.eqlistA RB) (
omap f xs) (
omap g xs).
Proof.
intros f g xs HH.
induction xs;
simpl.
now rewrite orel_inversion.
specialize (
HH a).
destruct (
f a);
inv HH;
auto with datatypes.
destruct (
omap f xs);
inv IHxs;
auto with datatypes.
Qed.
Lemma orel_option_map (
RB :
relation B):
forall (
f g :
A ->
B)
x,
(
forall x,
RB (
f x) (
g x)) ->
orel RB (
option_map f x) (
option_map g x).
Proof.
intros f g x HH.
destruct x; simpl; auto with datatypes.
Qed.
Lemma orel_obind_head
{
RA :
relation A} {
RB :
relation B} `{
Equivalence _ RB} {
f f'}:
orel RA f f' ->
forall g,
Proper (
RA ==>
orel RB)
g ->
forall h,
orel RB (
obind f g)
h <->
orel RB (
obind f'
g)
h.
Proof.
intros Eff g h Pg. setoid_rewrite Eff. reflexivity.
Qed.
Lemma orel_obind2_head
{
RA :
relation A} {
RB :
relation B} {
RC :
relation C}
`{
Equivalence _ RC} {
f f'}:
orel (
RA *
RB)
f f' ->
forall g,
Proper (
RA ==>
RB ==>
orel RC)
g ->
forall h,
orel RC (
obind2 f g)
h <->
orel RC (
obind2 f'
g)
h.
Proof.
intros Eff g h Pg. setoid_rewrite Eff. reflexivity.
Qed.
Fixpoint oconcat (
xs :
list (
option (
list A))) :
option (
list A) :=
match xs with
| [] =>
Some ([])
|
None::
_ =>
None
|
Some x ::
xs =>
do xs' <-
oconcat xs;
Some (
x ++
xs')
end.
Lemma option_map_inv_Some :
forall (
f :
A ->
B)
oa b,
option_map f oa =
Some b ->
exists a,
oa =
Some a /\
f a =
b.
Proof.
intros f oa b Hmap.
unfold option_map in Hmap;
destruct oa;
try congruence.
inv Hmap.
exists a;
auto.
Qed.
Lemma option_map_inv_None :
forall (
f :
A ->
B)
oa,
option_map f oa =
None ->
oa =
None.
Proof.
intros f oa Hmap.
unfold option_map in Hmap;
destruct oa;
try congruence.
Qed.
End OptionReasoning.
Definition orel_obind_intro_endo {
A} {
R:
relation A}
:= @
orel_obind_intro A A R R.
Lemma orel_obind2_intro:
forall {
A B C} (
RA:
relation A) (
RB:
relation B) {
RC:
relation C}
{
oab1 oab2 :
option (
A *
B)} {
f1 f2 :
A ->
B ->
option C},
orel (
RA *
RB)
oab1 oab2 ->
(
forall a1 b1 a2 b2,
oab1 =
Some (
a1,
b1) ->
oab2 =
Some (
a2,
b2) ->
RA a1 a2 ->
RB b1 b2 ->
orel RC (
f1 a1 b1) (
f2 a2 b2)) ->
orel RC (
obind2 oab1 f1) (
obind2 oab2 f2).
Proof.
Ltac split_orel_obinds :=
repeat intro;
repeat progress
(
subst*;
match goal with
| |-
orel ?
RB (
match ?
e with _ =>
_ end) (
match ?
e with _ =>
_ end) =>
destruct e;
split_orel_obinds
|
H: ?
equive ?
e1 ?
e2
|-
orel ?
RA (
match ?
e1 with _ =>
_ end)
(
match ?
e2 with _ =>
_ end) =>
setoid_rewrite H
| |-
orel ?
RB (
obind ?
oa ?
f1) (
obind ?
oa ?
f2) =>
eapply orel_obind_intro_same;
split_orel_obinds
| |-
orel ?
RB (
obind ?
oa1 ?
f1) (
obind ?
oa2 ?
f2) =>
eapply orel_obind_intro;
split_orel_obinds
| |-
orel ?
RB (
obind2 ?
oa1 ?
f1) (
obind2 ?
oa2 ?
f2) =>
eapply orel_obind2_intro;
split_orel_obinds
| |-
orel ?
RB (
Some _) (
Some _) =>
eapply orel_inversion
| |-
RelProd _ _ _ _ =>
eapply pair_compat;
split_orel_obinds
end; (
reflexivity ||
eassumption ||
idtac)).
Ltac rewrite_orel_obinds :=
repeat progress
(
subst;
match goal with
| [
H:?
equiv ?
L ?
R |-
context [ ?
L ] ] =>
setoid_rewrite H
end;
try reflexivity).
Ltac solve_orel_obinds :=
split_orel_obinds;
repeat rewrite_orel_obinds.
Section check_nodup.
Definition check_nodup (
l :
list positive) :=
Nat.eqb (
PS.cardinal (
ps_from_list l)) (
List.length l).
Lemma check_nodup_correct :
forall l,
check_nodup l =
true ->
NoDup l.
Proof.
End check_nodup.
Section sig2.
Context {
A :
Type} {
P Q :
A ->
Prop}.
Lemma sig2_of_sig:
forall (
s : {
s :
A |
P s }),
Q (
proj1_sig s) ->
{
s |
P s &
Q s }.
Proof.
intros (
s,
Ps)
Qs.
exact (
exist2 _ _ s Ps Qs).
Defined.
Extraction Inline sig2_of_sig.
Lemma sig2_weaken2:
forall {
Q' :
A ->
Prop},
(
forall s,
Q s ->
Q'
s) ->
{
s :
A |
P s &
Q s } ->
{
s |
P s &
Q'
s }.
Proof.
intros *
HQQ s.
destruct s as (
s,
Ps,
Qs).
apply HQQ in Qs.
exact (
exist2 _ _ s Ps Qs).
Defined.
Extraction Inline sig2_weaken2.
End sig2.