From Velus Require Import Common.
From Velus Require Import Operators.
From Velus Require Import Clocks.
From Coq Require Import Morphisms.
From Coq Require Import List.
Import List.ListNotations.
Open Scope list_scope.
Static environment for analysis of Lustre programs
Module Type STATICENV
(
Import Ids :
IDS)
(
Import Op :
OPERATORS)
(
Import OpAux :
OPERATORS_AUX Ids Op)
(
Import Cks :
CLOCKS Ids Op OpAux).
Record annotation :=
{
typ :
type;
clo :
clock;
causl :
ident;
causl_last :
option ident;
}.
Definition ann_with_clock (
ann :
annotation) (
ck :
clock) :=
Build_annotation ann.(
typ)
ck ann.(
causl)
ann.(
causl_last).
Definition ann_with_caus (
ann :
annotation) (
cx :
ident) :=
Build_annotation ann.(
typ)
ann.(
clo)
cx ann.(
causl_last).
Definition static_env :=
list (
ident *
annotation).
Inductive IsVar :
static_env ->
ident ->
Prop :=
|
IsVarC :
forall senv x,
InMembers x senv ->
IsVar senv x.
Inductive HasType :
static_env ->
ident ->
type ->
Prop :=
|
HasTypeC :
forall senv x ty e,
In (
x,
e)
senv ->
e.(
typ) =
ty ->
HasType senv x ty.
Inductive HasClock :
static_env ->
ident ->
clock ->
Prop :=
|
HasClockC :
forall senv x ck e,
In (
x,
e)
senv ->
e.(
clo) =
ck ->
HasClock senv x ck.
Inductive HasCaus :
static_env ->
ident ->
ident ->
Prop :=
|
HasCausC :
forall senv x cx e,
In (
x,
e)
senv ->
e.(
causl) =
cx ->
HasCaus senv x cx.
Inductive IsLast :
static_env ->
ident ->
Prop :=
|
IsLastC :
forall senv x e,
In (
x,
e)
senv ->
e.(
causl_last) <>
None ->
IsLast senv x.
Inductive HasLastCaus :
static_env ->
ident ->
ident ->
Prop :=
|
HasLastCausC :
forall senv x cx e,
In (
x,
e)
senv ->
e.(
causl_last) =
Some cx ->
HasLastCaus senv x cx.
Global Hint Constructors IsVar HasType HasClock HasCaus IsLast HasLastCaus :
senv.
Global Instance IsVar_proper:
Proper (@
Permutation.Permutation _ ==> @
eq _ ==>
iff)
IsVar.
Proof.
intros ?? Hperm ???; subst; split; intros Hin; inv Hin;
(rewrite Hperm in * || rewrite <-Hperm in * ); auto with senv.
Qed.
Global Instance HasType_proper:
Proper (@
Permutation.Permutation _ ==> @
eq _ ==> @
eq _ ==>
iff)
HasType.
Proof.
intros ?? Hperm ??????; subst; split; intros Hin; inv Hin;
(rewrite Hperm in * || rewrite <-Hperm in * ); eauto with senv.
Qed.
Global Instance HasClock_proper:
Proper (@
Permutation.Permutation _ ==> @
eq _ ==> @
eq _ ==>
iff)
HasClock.
Proof.
intros ?? Hperm ??????; subst; split; intros Hin; inv Hin;
(rewrite Hperm in * || rewrite <-Hperm in * ); eauto with senv.
Qed.
Global Instance HasCaus_proper:
Proper (@
Permutation.Permutation _ ==> @
eq _ ==> @
eq _ ==>
iff)
HasCaus.
Proof.
intros ?? Hperm ??????; subst; split; intros Hin; inv Hin;
(rewrite Hperm in * || rewrite <-Hperm in * ); eauto with senv.
Qed.
Global Instance IsLast_proper:
Proper (@
Permutation.Permutation _ ==> @
eq _ ==>
iff)
IsLast.
Proof.
intros ?? Hperm ???; subst; split; intros Hin; inv Hin;
(rewrite Hperm in * || rewrite <-Hperm in * ); eauto with senv.
Qed.
Global Instance HasLastCaus_proper:
Proper (@
Permutation.Permutation _ ==> @
eq _ ==> @
eq _ ==>
iff)
HasLastCaus.
Proof.
intros ?? Hperm ??????; subst; split; intros Hin; inv Hin;
(rewrite Hperm in * || rewrite <-Hperm in * ); eauto with senv.
Qed.
Lemma IsVar_incl :
forall senv1 senv2 x,
incl senv1 senv2 ->
IsVar senv1 x ->
IsVar senv2 x.
Proof.
Lemma IsVar_incl_fst :
forall senv1 senv2,
(
forall x,
IsVar senv1 x ->
IsVar senv2 x) ->
incl (
map fst senv1) (
map fst senv2).
Proof.
intros *
Hincl ?
Hin.
simpl_In.
assert (
IsVar senv1 a)
as Hv by (
econstructor;
solve_In).
apply Hincl in Hv.
inv Hv.
solve_In.
Qed.
Lemma HasType_incl :
forall senv1 senv2 x ty,
incl senv1 senv2 ->
HasType senv1 x ty ->
HasType senv2 x ty.
Proof.
intros * Hincl Hv. inv Hv. eauto with senv.
Qed.
Lemma HasClock_incl :
forall senv1 senv2 x ck,
incl senv1 senv2 ->
HasClock senv1 x ck ->
HasClock senv2 x ck.
Proof.
intros * Hincl Hv. inv Hv. eauto with senv.
Qed.
Lemma HasCaus_incl :
forall senv1 senv2 x cx,
incl senv1 senv2 ->
HasCaus senv1 x cx ->
HasCaus senv2 x cx.
Proof.
intros * Hincl Hv. inv Hv. eauto with senv.
Qed.
Lemma IsLast_incl :
forall senv1 senv2 x,
incl senv1 senv2 ->
IsLast senv1 x ->
IsLast senv2 x.
Proof.
Lemma HasLastCaus_incl :
forall senv1 senv2 x cx,
incl senv1 senv2 ->
HasLastCaus senv1 x cx ->
HasLastCaus senv2 x cx.
Proof.
intros * Hincl Hv. inv Hv. eauto with senv.
Qed.
Global Hint Resolve IsVar_incl HasType_incl HasClock_incl HasCaus_incl IsLast_incl HasLastCaus_incl :
senv.
Lemma HasType_IsVar :
forall env x ty,
HasType env x ty ->
IsVar env x.
Proof.
intros *
Hhas.
inv Hhas;
eauto using In_InMembers with senv.
Qed.
Lemma HasClock_IsVar :
forall env x ck,
HasClock env x ck ->
IsVar env x.
Proof.
intros *
Hhas.
inv Hhas;
eauto using In_InMembers with senv.
Qed.
Lemma IsLast_IsVar :
forall env x,
IsLast env x ->
IsVar env x.
Proof.
intros *
His.
inv His;
eauto using In_InMembers with senv.
Qed.
Global Hint Resolve HasType_IsVar HasClock_IsVar IsLast_IsVar :
senv.
Fact IsVar_app :
forall env1 env2 x,
IsVar (
env1 ++
env2)
x <->
IsVar env1 x \/
IsVar env2 x.
Proof.
split;
intros *
Hv.
-
inv Hv.
apply InMembers_app in H as [|];
auto with senv.
-
destruct Hv as [
Hv|
Hv];
inv Hv.
1,2:
constructor;
apply InMembers_app;
auto.
Qed.
Fact IsLast_app :
forall env1 env2 x,
IsLast (
env1 ++
env2)
x <->
IsLast env1 x \/
IsLast env2 x.
Proof.
split;
intros *
Hv.
-
inv Hv.
apply in_app_iff in H as [|];
eauto with senv.
-
destruct Hv as [
Hv|
Hv];
inv Hv.
1,2:
econstructor;
try eapply in_app_iff;
eauto.
Qed.
Fact HasType_app :
forall env1 env2 x cx,
HasType (
env1 ++
env2)
x cx <->
HasType env1 x cx \/
HasType env2 x cx.
Proof.
split;
intros *
Hv.
-
inv Hv.
apply in_app_iff in H as [|];
eauto with senv.
-
destruct Hv as [
Hv|
Hv];
inv Hv.
1,2:
econstructor;
try eapply in_app_iff;
eauto.
Qed.
Fact HasClock_app :
forall env1 env2 x cx,
HasClock (
env1 ++
env2)
x cx <->
HasClock env1 x cx \/
HasClock env2 x cx.
Proof.
split;
intros *
Hv.
-
inv Hv.
apply in_app_iff in H as [|];
eauto with senv.
-
destruct Hv as [
Hv|
Hv];
inv Hv.
1,2:
econstructor;
try eapply in_app_iff;
eauto.
Qed.
Fact HasCaus_app :
forall env1 env2 x cx,
HasCaus (
env1 ++
env2)
x cx <->
HasCaus env1 x cx \/
HasCaus env2 x cx.
Proof.
split;
intros *
Hv.
-
inv Hv.
apply in_app_iff in H as [|];
eauto with senv.
-
destruct Hv as [
Hv|
Hv];
inv Hv.
1,2:
econstructor;
try eapply in_app_iff;
eauto.
Qed.
Fact HasLastCaus_app :
forall env1 env2 x cx,
HasLastCaus (
env1 ++
env2)
x cx <->
HasLastCaus env1 x cx \/
HasLastCaus env2 x cx.
Proof.
split;
intros *
Hv.
-
inv Hv.
apply in_app_iff in H as [|];
eauto with senv.
-
destruct Hv as [
Hv|
Hv];
inv Hv.
1,2:
econstructor;
try eapply in_app_iff;
eauto.
Qed.
Global Hint Rewrite IsLast_app HasType_app HasClock_app HasCaus_app HasLastCaus_app :
list.
Definition senv_of_tyck (
l :
list (
ident * (
type *
clock))) :
static_env :=
List.map (
fun '(
x, (
ty,
ck)) => (
x,
Build_annotation ty ck xH None))
l.
Definition senv_of_inout (
l :
list (
ident * (
type *
clock *
ident))) :
static_env :=
List.map (
fun '(
x, (
ty,
ck,
cx)) => (
x,
Build_annotation ty ck cx None))
l.
Definition senv_of_locs {
A} (
l :
list (
ident * (
type *
clock *
ident *
option (
A *
ident)))) :
static_env :=
List.map (
fun '(
x, (
ty,
ck,
cx,
o)) => (
x,
Build_annotation ty ck cx (
option_map snd o)))
l.
Global Hint Unfold senv_of_inout senv_of_locs :
list.
Lemma map_fst_senv_of_tyck :
forall l,
map fst (
senv_of_tyck l) =
map fst l.
Proof.
Lemma map_fst_senv_of_inout :
forall l,
map fst (
senv_of_inout l) =
map fst l.
Proof.
Lemma map_fst_senv_of_locs {
A} :
forall l,
map fst (@
senv_of_locs A l) =
map fst l.
Proof.
Global Hint Rewrite ->
map_fst_senv_of_tyck.
Global Hint Rewrite ->
map_fst_senv_of_inout.
Global Hint Rewrite -> @
map_fst_senv_of_locs.
Lemma InMembers_senv_of_locs {
A} :
forall x locs,
InMembers x (@
senv_of_locs A locs) <->
InMembers x locs.
Proof.
Global Hint Rewrite -> @
InMembers_senv_of_locs :
list.
Lemma NoDupMembers_senv_of_locs {
A} :
forall locs,
NoDupMembers (@
senv_of_locs A locs) <->
NoDupMembers locs.
Proof.
Lemma IsVar_senv_of_locs {
A} :
forall x locs,
IsVar (@
senv_of_locs A locs)
x <->
InMembers x locs.
Proof.
split; intros * Hiv; [inv Hiv|constructor]; autorewrite with list in *; auto.
Qed.
Global Hint Rewrite -> @
IsVar_senv_of_locs.
Lemma IsLast_senv_of_locs {
A} :
forall x locs,
IsLast (@
senv_of_locs A locs)
x ->
InMembers x locs.
Proof.
intros * Hiv; inv Hiv; solve_In.
Qed.
Definition idty (
env :
static_env) :
list (
ident *
type) :=
map (
fun '(
x,
entry) => (
x,
entry.(
typ)))
env.
Definition idck (
env :
static_env) :
list (
ident *
clock) :=
map (
fun '(
x,
entry) => (
x,
entry.(
clo)))
env.
Global Hint Unfold idty idck :
list.
Definition idcaus_of_senv (
env :
static_env) :
list (
ident *
ident) :=
map (
fun '(
x,
e) => (
x,
e.(
causl)))
env
++
map_filter (
fun '(
x,
e) =>
option_map (
fun cx => (
x,
cx))
e.(
causl_last))
env.
Import Permutation.
Fact idcaus_of_senv_app :
forall Γ1 Γ2,
Permutation (
idcaus_of_senv (Γ1 ++ Γ2))
(
idcaus_of_senv Γ1 ++
idcaus_of_senv Γ2).
Proof.
Fact idcaus_of_senv_In :
forall Γ
x cx,
(
HasCaus Γ
x cx \/
HasLastCaus Γ
x cx)
<->
In (
x,
cx) (
idcaus_of_senv Γ).
Proof.
intros *.
unfold idcaus_of_senv.
rewrite in_app_iff.
split; (
intros [|]; [
left|
right]).
-
inv H.
solve_In.
-
inv H.
solve_In.
simpl.
rewrite H1;
simpl;
auto.
-
simpl_In.
econstructor;
solve_In;
eauto.
-
simpl_In.
econstructor;
solve_In;
eauto.
Qed.
Fact HasCaus_snd_det Γ :
forall x1 x2 cx,
NoDup (
map snd (
idcaus_of_senv Γ)) ->
HasCaus Γ
x1 cx ->
HasCaus Γ
x2 cx ->
x1 =
x2.
Proof.
Fact HasLastCaus_snd_det Γ :
forall x1 x2 cx,
NoDup (
map snd (
idcaus_of_senv Γ)) ->
HasLastCaus Γ
x1 cx ->
HasLastCaus Γ
x2 cx ->
x1 =
x2.
Proof.
intros *
Hnd Hc1 Hc2.
unfold idcaus_of_senv in *.
rewrite map_app in Hnd.
apply NoDup_app_r in Hnd.
inv Hc1.
inv Hc2.
eapply NoDup_snd_det in Hnd;
eauto. 2:
solve_In;
simpl;
rewrite H2;
simpl;
eauto.
clear H1;
solve_In.
simpl;
rewrite H0;
simpl;
auto.
Qed.
Fact NoDup_HasCaus_HasLastCaus Γ :
forall x1 x2 cx,
NoDup (
map snd (
idcaus_of_senv Γ)) ->
HasCaus Γ
x1 cx ->
HasLastCaus Γ
x2 cx ->
False.
Proof.
intros *
Hnd Hc1 Hc2.
unfold idcaus_of_senv in *.
rewrite map_app in Hnd.
inv Hc1.
inv Hc2.
eapply NoDup_app_In in Hnd.
eapply Hnd.
-
solve_In.
rewrite H1;
simpl;
auto.
-
clear H0.
solve_In.
Qed.
Lemma senv_of_tyck_NoLast :
forall Γ,
forall x, ~
IsLast (
senv_of_tyck Γ)
x.
Proof.
intros * Hl. inv Hl. simpl_In. auto.
Qed.
Lemma senv_of_inout_NoLast :
forall Γ,
forall x, ~
IsLast (
senv_of_inout Γ)
x.
Proof.
intros * Hl. inv Hl. simpl_In. auto.
Qed.
Lemma NoLast_app :
forall Γ1 Γ2,
(
forall x, ~
IsLast (Γ1 ++ Γ2)
x)
<-> (
forall x, ~
IsLast Γ1
x) /\ (
forall x, ~
IsLast Γ2
x).
Proof.
intros *.
setoid_rewrite IsLast_app.
split;
intros.
split;
intros ?
Hl.
1,2:
eapply H;
eauto.
destruct H as (
H1&
H2).
intros [|]; [
eapply H1|
eapply H2];
eauto.
Qed.
Global Hint Rewrite map_fst_senv_of_inout :
list.
End STATICENV.
Module StaticEnvFun
(
Ids :
IDS)
(
Op :
OPERATORS)
(
OpAux :
OPERATORS_AUX Ids Op)
(
Cks :
CLOCKS Ids Op OpAux) <:
STATICENV Ids Op OpAux Cks.
Include STATICENV Ids Op OpAux Cks.
End StaticEnvFun.