Module ObcTyping
From Velus Require Import Common.
From Velus Require Import Environment.
From Velus Require Import Operators.
From Velus Require Import VelusMemory.
From Velus Require Import Obc.ObcSyntax.
From Velus Require Import Obc.ObcSemantics.
From Coq Require Import Morphisms.
From Coq Require Import List.
Import List.ListNotations.
Open Scope list_scope.
Obc typing
Module Type OBCTYPING
(
Import Ids :
IDS)
(
Import Op :
OPERATORS)
(
Import OpAux :
OPERATORS_AUX Op)
(
Import Syn :
OBCSYNTAX Ids Op OpAux)
(
Import Sem :
OBCSEMANTICS Ids Op OpAux Syn).
Section WellTyped.
Variable p :
program.
Variable insts :
list (
ident *
ident).
Variable mems :
list (
ident *
type).
Variable vars :
list (
ident *
type).
Inductive wt_exp :
exp ->
Prop :=
|
wt_Var:
forall x ty,
In (
x,
ty)
vars ->
wt_exp (
Var x ty)
|
wt_State:
forall x ty,
In (
x,
ty)
mems ->
wt_exp (
State x ty)
|
wt_Const:
forall c,
wt_exp (
Const c)
|
wt_Unop:
forall op e ty,
type_unop op (
typeof e) =
Some ty ->
wt_exp e ->
wt_exp (
Unop op e ty)
|
wt_Binop:
forall op e1 e2 ty,
type_binop op (
typeof e1) (
typeof e2) =
Some ty ->
wt_exp e1 ->
wt_exp e2 ->
wt_exp (
Binop op e1 e2 ty)
|
wt_Valid:
forall x ty,
In (
x,
ty)
vars ->
wt_exp (
Valid x ty).
Inductive wt_stmt :
stmt ->
Prop :=
|
wt_Assign:
forall x e,
In (
x,
typeof e)
vars ->
wt_exp e ->
wt_stmt (
Assign x e)
|
wt_AssignSt:
forall x e,
In (
x,
typeof e)
mems ->
wt_exp e ->
wt_stmt (
AssignSt x e)
|
wt_Ifte:
forall e s1 s2,
wt_exp e ->
typeof e =
bool_type ->
wt_stmt s1 ->
wt_stmt s2 ->
wt_stmt (
Ifte e s1 s2)
|
wt_Comp:
forall s1 s2,
wt_stmt s1 ->
wt_stmt s2 ->
wt_stmt (
Comp s1 s2)
|
wt_Call:
forall clsid cls p'
o f fm ys es,
In (
o,
clsid)
insts ->
find_class clsid p =
Some(
cls,
p') ->
find_method f cls.(
c_methods) =
Some fm ->
NoDup ys ->
Forall2 (
fun y xt =>
In (
y,
snd xt)
vars)
ys fm.(
m_out) ->
Forall2 (
fun e xt =>
typeof e =
snd xt)
es fm.(
m_in) ->
Forall wt_exp es ->
wt_stmt (
Call ys clsid o f es)
|
wt_Skip:
wt_stmt Skip.
End WellTyped.
Definition wt_method (
p :
program)
(
insts :
list (
ident *
ident))
(
mems :
list (
ident *
type))
(
m :
method) :
Prop
:=
wt_stmt p insts mems (
meth_vars m)
m.(
m_body).
Definition wt_class (
p :
program) (
cls:
class) :
Prop
:= (
Forall (
fun ocls=>
find_class (
snd ocls)
p <>
None)
cls.(
c_objs))
/\
Forall (
wt_method p cls.(
c_objs)
cls.(
c_mems))
cls.(
c_methods).
Inductive wt_program :
program ->
Prop :=
|
wtp_nil:
wt_program []
|
wtp_cons:
forall cls p,
wt_class p cls ->
wt_program p ->
Forall (
fun cls' =>
cls.(
c_name) <>
cls'.(
c_name))
p ->
wt_program (
cls::
p).
Hint Constructors wt_exp wt_stmt wt_program :
obctyping.
Instance wt_exp_Proper:
Proper (@
Permutation.Permutation (
ident *
type)
==> @
Permutation.Permutation (
ident *
type)
==> @
eq exp ==>
iff)
wt_exp.
Proof.
intros m2 m1 Hm v2 v1 Hv e' e He; subst.
induction e; split; inversion_clear 1; constructor;
try rewrite Hm in *;
try rewrite Hv in *;
repeat match goal with H:_ <-> _ |- _ => apply H; clear H end;
auto with obctyping.
Qed.
Instance wt_stmt_Proper:
Proper (@
eq program
==> @
Permutation.Permutation (
ident *
ident)
==> @
Permutation.Permutation (
ident *
type)
==> @
Permutation.Permutation (
ident *
type)
==> @
eq stmt ==>
iff)
wt_stmt.
Proof.
intros p'
p Hp xs2 xs1 Hxs ys2 ys1 Hys zs2 zs1 Hzs s'
s Hs.
rewrite Hp,
Hs in *;
clear Hp Hs.
induction s;
split;
intro HH;
inv HH.
-
constructor;
rewrite <-
Hzs;
try rewrite <-
Hys;
auto.
-
constructor;
rewrite Hzs;
try rewrite Hys;
auto.
-
constructor;
try rewrite <-
Hzs;
rewrite <-
Hys;
auto.
-
constructor;
try rewrite Hzs;
rewrite Hys;
auto.
-
constructor;
try rewrite <-
IHs1;
try rewrite <-
IHs2;
auto;
try rewrite <-
Hzs;
try rewrite <-
Hys;
auto.
-
constructor;
try rewrite IHs1;
try rewrite IHs2;
auto;
try rewrite Hzs;
try rewrite Hys;
auto.
-
constructor;
try rewrite <-
IHs1;
try rewrite <-
IHs2;
auto.
-
constructor;
try rewrite IHs1;
try rewrite IHs2;
auto.
-
econstructor;
eauto.
*
now rewrite <-
Hxs.
*
match goal with H:
Forall2 _ _ fm.(
m_out) |-
_ =>
apply Forall2_impl_In with (2:=
H)
end.
intros;
now rewrite <-
Hzs.
*
match goal with H:
Forall (
wt_exp _ _)
_ |-
_ =>
apply Forall_impl with (2:=
H)
end.
intros;
now rewrite <-
Hys, <-
Hzs.
-
econstructor;
eauto.
*
now rewrite Hxs.
*
match goal with H:
Forall2 _ _ fm.(
m_out) |-
_ =>
apply Forall2_impl_In with (2:=
H)
end.
intros;
now rewrite Hzs.
*
match goal with H:
Forall (
wt_exp _ _)
_ |-
_ =>
apply Forall_impl with (2:=
H)
end.
intros;
now rewrite Hys,
Hzs.
-
constructor.
-
constructor.
Qed.
Properties
Definition wt_venv_val (
ve:
venv) (
xty:
ident *
type) :=
match Env.find (
fst xty)
ve with
|
None =>
True
|
Some v =>
wt_val v (
snd xty)
end.
Definition wt_env (
ve:
venv) (
vars:
list (
ident *
type)) :=
Forall (
wt_venv_val ve)
vars.
Hint Unfold wt_env.
Inductive wt_mem :
menv ->
program ->
class ->
Prop :=
|
WTmenv:
forall me p cl,
wt_env (
values me)
cl.(
c_mems) ->
Forall (
wt_mem_inst me p)
cl.(
c_objs) ->
wt_mem me p cl
with wt_mem_inst :
menv ->
program -> (
ident *
ident) ->
Prop :=
|
WTminst_empty:
forall me p o c,
find_inst o me =
None ->
wt_mem_inst me p (
o,
c)
|
WTminst:
forall me p o c mo cls p',
find_inst o me =
Some mo ->
find_class c p =
Some (
cls,
p') ->
wt_mem mo p'
cls ->
wt_mem_inst me p (
o,
c).
Definition wt_state (
p:
program) (
me:
menv) (
ve:
venv) (
c:
class) (
vars:
list (
ident *
type)) :
Prop :=
wt_mem me p c /\
wt_env ve vars.
Section wt_mem_mult.
Variable P :
forall me p cl,
wt_mem me p cl ->
Prop.
Variable Pinst :
forall me p oc,
wt_mem_inst me p oc ->
Prop.
Arguments P {
me p cl}
H.
Arguments Pinst {
me p oc}
H.
Arguments WTmenv {
me p cl}
Hwt Hinsts.
Arguments WTminst_empty {
me}
p {
o}
c Hfind.
Arguments WTminst {
me p o c mo cls p'}
Hinst Hclass Hwt.
Hypothesis WTmenvCase:
forall me p cl
(
x :
wt_env (
values me)
cl.(
c_mems))
(
ys :
Forall (
wt_mem_inst me p)
cl.(
c_objs)),
Forall (
fun cl =>
exists H, @
Pinst me p cl H)
cl.(
c_objs) ->
@
P me p cl (
WTmenv x ys).
Hypothesis WTminst_emptyCase:
forall me p o c
(
Hfind:
find_inst o me =
None),
Pinst (
WTminst_empty p c Hfind).
Hypothesis WTminstCase:
forall me p o c mo cls p'
(
Hfind_inst:
find_inst o me =
Some mo)
(
Hfind_class:
find_class c p =
Some (
cls,
p'))
(
Hwt:
wt_mem mo p'
cls),
P Hwt ->
Pinst (
WTminst Hfind_inst Hfind_class Hwt).
Fixpoint wt_mem_ind_mult {
me p cl} (
H:
wt_mem me p cl) {
struct H} :
P H
with wt_mem_inst_ind_mult {
me p oc} (
H:
wt_mem_inst me p oc) {
struct H}:
Pinst H.
-
destruct H as [? ? ?
Hwt Hrec].
apply WTmenvCase.
induction Hrec as [| ? ?
Hwt'
Hrec' ];
constructor;
auto.
exists Hwt';
auto.
-
destruct H;
clear wt_mem_inst_ind_mult;
auto using WTminst_emptyCase,
WTminstCase.
Qed.
End wt_mem_mult.
Lemma wt_vempty:
forall vars,
wt_env vempty vars.
Proof.
Lemma wt_mempty:
forall p cls,
wt_mem mempty p cls.
Proof.
Hint Resolve wt_vempty wt_mempty.
Lemma venv_find_wt_val:
forall vars ve x ty v,
wt_env ve vars ->
In (x, ty) vars ->
Env.find x ve = Some v ->
wt_val v ty.
Proof.
intros *
WTe Hin Hfind.
apply Forall_forall with (1:=
WTe)
in Hin.
unfold wt_venv_val in Hin.
simpl in Hin.
now rewrite Hfind in Hin.
Qed.
Lemma wt_program_find_class:
forall clsid p cls p',
wt_program p ->
find_class clsid p = Some (cls, p') ->
wt_class p' cls /\ wt_program p'.
Proof.
induction p as [|
cls p]; [
now inversion 2|].
intros cls'
p'
WTp Hfind.
inversion Hfind as [
Heq];
clear Hfind.
inversion_clear WTp as [|? ?
WTc WTp'
Hnodup];
rename WTp'
into WTp.
destruct (
ident_eq_dec cls.(
c_name)
clsid)
as [
He|
Hne].
-
subst.
rewrite ident_eqb_refl in Heq.
injection Heq;
intros;
subst.
auto.
-
rewrite (
proj2 (
ident_eqb_neq cls.(
c_name)
clsid)
Hne)
in Heq.
apply IHp with (1:=
WTp) (2:=
Heq).
Qed.
Lemma wt_class_find_method:
forall p cls f fm,
wt_class p cls ->
find_method f cls.(c_methods) = Some fm ->
wt_method p cls.(c_objs) cls.(c_mems) fm.
Proof.
intros p cls f fm WTc Hfindm.
destruct WTc as (
Hfo &
WTms).
apply Forall_forall with (1:=
WTms).
apply find_method_In with (1:=
Hfindm).
Qed.
Lemma pres_sem_exp:
forall mems vars me ve e v,
wt_env (values me) mems ->
wt_env ve vars ->
wt_exp mems vars e ->
exp_eval me ve e (Some v) ->
wt_val v (typeof e).
Proof.
Lemma pres_sem_exp':
forall prog c vars me ve e v,
wt_state prog me ve c vars ->
wt_exp c.(c_mems) vars e ->
exp_eval me ve e (Some v) ->
wt_val v (typeof e).
Proof.
intros * (
WT_mem&?) ? ?.
inv WT_mem.
eapply pres_sem_exp with (
vars:=
vars);
eauto.
Qed.
Hint Resolve pres_sem_exp'.
Lemma pres_sem_expo:
forall mems vars me ve e vo,
wt_env (values me) mems ->
wt_env ve vars ->
wt_exp mems vars e ->
exp_eval me ve e vo ->
wt_valo vo (typeof e).
Proof.
Lemma pres_sem_expo':
forall prog c vars me ve e vo,
wt_state prog me ve c vars ->
wt_exp c.(c_mems) vars e ->
exp_eval me ve e vo ->
wt_valo vo (typeof e).
Proof.
intros. destruct vo; simpl; eauto.
Qed.
Hint Resolve pres_sem_expo'.
Lemma pres_sem_exps:
forall prog c vars me ve es vos,
wt_state prog me ve c vars ->
Forall (wt_exp c.(c_mems) vars) es ->
Forall2 (exp_eval me ve) es vos ->
Forall2 (fun e vo => wt_valo vo (typeof e)) es vos.
Proof.
intros;
eapply Forall2_impl_In;
eauto.
intros.
simpl in *.
match goal with Hf:
Forall _ ?
xs,
Hi:
In _ ?
xs |-
_ =>
apply Forall_forall with (1:=
Hf)
in Hi end.
eapply pres_sem_expo';
eauto.
Qed.
Hint Resolve pres_sem_exps.
Lemma wt_venv_val_add:
forall env v x y ty,
(y = x /\ wt_val v ty) \/ (y <> x /\ wt_venv_val env (y, ty)) ->
wt_venv_val (Env.add x v env) (y, ty).
Proof.
intros *
Hor.
unfold wt_venv_val;
simpl.
destruct Hor as [[
Heq Hwt]|[
Hne Hwt]].
-
subst.
now rewrite Env.gss.
-
now rewrite Env.gso with (1:=
Hne).
Qed.
Lemma wt_env_add:
forall vars env x t v,
NoDupMembers vars ->
wt_env env vars ->
In (x, t) vars ->
wt_val v t ->
wt_env (Env.add x v env) vars.
Proof.
intros *
Hndup WTenv Hin WTv.
unfold wt_env.
induction vars as [|
y vars];
auto.
apply Forall_cons2 in WTenv.
destruct WTenv as (
WTx &
WTenv).
destruct y as (
y &
ty).
apply nodupmembers_cons in Hndup.
destruct Hndup as (
Hnin &
Hndup).
inv Hin.
-
match goal with H:(
y,
ty) =
_ |-
_ =>
injection H;
intros;
subst end.
constructor.
+
apply wt_venv_val_add;
left;
auto.
+
apply Forall_impl_In with (2:=
WTenv).
destruct a as (
y &
ty).
intros Hin HTy.
apply NotInMembers_NotIn with (
b:=
ty)
in Hnin.
apply wt_venv_val_add;
right;
split.
intro;
subst;
contradiction.
now apply HTy.
-
constructor.
+
apply wt_venv_val_add.
destruct (
ident_eq_dec x y);
[
subst;
left;
split|
right];
auto.
apply NotInMembers_NotIn with (
b:=
t)
in Hnin.
contradiction.
+
apply IHvars;
auto.
Qed.
Hint Resolve wt_env_add.
Lemma wt_mem_inst_add_val:
forall p o c x v me,
wt_mem_inst me p (o, c) ->
wt_mem_inst (add_val x v me) p (o, c).
Proof.
inversion_clear 1.
- left; auto.
- eright; eauto.
Qed.
Lemma wt_mem_add_val:
forall p c x t v me,
wt_mem me p c ->
In (x, t) (c_mems c) ->
wt_val v t ->
wt_mem (add_val x v me) p c.
Proof.
Hint Resolve wt_mem_add_val.
Corollary wt_state_add:
forall prog me ve c vars x v t,
wt_state prog me ve c vars ->
NoDupMembers vars ->
In (x, t) vars ->
wt_val v t ->
wt_state prog me (Env.add x v ve) c vars.
Proof.
intros * (?&?) ???; split; eauto.
Qed.
Hint Resolve wt_state_add.
Corollary wt_state_adds:
forall xs prog me ve c vars vs (xts: list (ident * type)),
wt_state prog me ve c vars ->
NoDupMembers vars ->
Forall2 (fun y xt => In (y, snd xt) vars) xs xts ->
NoDup xs ->
Forall2 (fun rv xt => wt_val rv (snd xt)) vs xts ->
wt_state prog me (Env.adds xs vs ve) c vars.
Proof.
induction xs;
inversion 3;
inversion 1;
inversion 1;
subst;
auto.
rewrite Env.adds_cons_cons;
eauto.
Qed.
Hint Resolve wt_state_adds.
Corollary wt_state_adds_opt:
forall xs prog me ve c vars vs (xts: list (ident * type)),
wt_state prog me ve c vars ->
NoDupMembers vars ->
Forall2 (fun y xt => In (y, snd xt) vars) xs xts ->
NoDup xs ->
Forall2 (fun rv xt => wt_val rv (snd xt)) vs xts ->
wt_state prog me (Env.adds_opt xs (map Some vs) ve) c vars.
Proof.
Hint Resolve wt_state_adds_opt.
Corollary wt_state_add_val:
forall prog me ve c vars x v t,
wt_state prog me ve c vars ->
In (x, t) (c_mems c) ->
wt_val v t ->
wt_state prog (add_val x v me) ve c vars.
Proof.
intros * (?&?) ??; split; eauto.
Qed.
Hint Resolve wt_state_add_val.
Lemma wt_mem_inst_add_inst_neq:
forall p o c x me_x me,
wt_mem_inst me p (o, c) ->
x <> o ->
wt_mem_inst (add_inst x me_x me) p (o, c).
Proof.
Lemma wt_mem_inst_add_inst_eq:
forall p c x cls p' me_x me,
wt_mem_inst me p (x, c) ->
find_class c p = Some (cls, p') ->
wt_mem me_x p' cls ->
wt_mem_inst (add_inst x me_x me) p (x, c).
Proof.
Lemma wt_mem_add_inst:
forall p c x c_x cls p' me_x me,
wt_mem me p c ->
In (x, c_x) c.(c_objs) ->
find_class c_x p = Some (cls, p') ->
wt_mem me_x p' cls ->
wt_mem (add_inst x me_x me) p c.
Proof.
Hint Resolve wt_mem_add_inst.
Corollary wt_state_add_inst:
forall prog me ve c c' prog' vars x me_x c_x,
wt_state prog me ve c vars ->
In (x, c_x) (c_objs c) ->
find_class c_x prog = Some (c', prog') ->
wt_mem me_x prog' c' ->
wt_state prog (add_inst x me_x me) ve c vars.
Proof.
intros * (?&?) ??; split; eauto.
Qed.
Hint Resolve wt_state_add_inst.
Lemma wt_venv_val_remove:
forall env x y ty,
wt_venv_val env (y, ty) ->
wt_venv_val (Env.remove x env) (y, ty).
Proof.
Lemma wt_env_remove:
forall x env vars,
wt_env env vars ->
wt_env (Env.remove x env) vars.
Proof.
induction vars as [|(
y,
yt)
vars];
auto.
setoid_rewrite Forall_cons2.
destruct 1
as (
Hy &
Hvars).
split; [|
now apply IHvars].
now apply wt_venv_val_remove.
Qed.
Hint Resolve wt_env_remove.
Lemma wt_env_adds_opt:
forall vars env ys outs rvs,
NoDupMembers vars ->
NoDup ys ->
wt_env env vars ->
Forall2 (fun y (xt: ident * type) => In (y, snd xt) vars) ys outs ->
Forall2 (fun vo xt => wt_valo vo (snd xt)) rvs outs ->
wt_env (Env.adds_opt ys rvs env) vars.
Proof.
intros *
NodupM Nodup WTenv Hin WTv.
assert (
length ys =
length rvs)
as Length
by (
transitivity (
length outs); [|
symmetry];
eapply Forall2_length;
eauto).
revert env rvs outs WTenv WTv Length Hin.
induction ys,
rvs,
outs;
intros *
WTenv WTv Length Hin;
inv Length;
inv Nodup;
inv Hin;
inv WTv;
auto.
destruct o.
-
rewrite Env.adds_opt_cons_cons';
auto.
eapply IHys;
eauto.
-
rewrite Env.adds_opt_cons_cons_None;
auto.
eapply IHys;
eauto.
Qed.
Hint Resolve wt_env_adds_opt.
Lemma wt_params:
forall vos xs es,
Forall2 (fun e vo => wt_valo vo (typeof e)) es vos ->
Forall2 (fun e (xt: ident * type) => typeof e = snd xt) es xs ->
Forall2 (fun vo xt => wt_valo vo (snd xt)) vos xs.
Proof.
induction vos, xs, es; intros * Wt Eq; inv Wt;
inversion_clear Eq as [|? ? ? ? E]; auto.
constructor; eauto.
now rewrite <- E.
Qed.
Hint Resolve wt_params.
Lemma wt_env_params:
forall vos callee,
Forall2 (fun vo xt => wt_valo vo (snd xt)) vos (m_in callee) ->
wt_env (Env.adds_opt (map fst (m_in callee)) vos vempty) (meth_vars callee).
Proof.
Hint Resolve wt_env_params.
Lemma wt_env_params_exprs:
forall vos callee es,
Forall2 (fun e vo => wt_valo vo (typeof e)) es vos ->
Forall2 (fun (e : exp) (xt : ident * type) => typeof e = snd xt) es (m_in callee) ->
wt_env (Env.adds_opt (map fst (m_in callee)) vos vempty) (meth_vars callee).
Proof.
Hint Resolve wt_env_params_exprs.
Lemma pres_sem_stmt':
(forall p me ve stmt e',
stmt_eval p me ve stmt e' ->
forall cls vars,
let (me', ve') := e' in
NoDupMembers vars ->
wt_program p ->
wt_state p me ve cls vars ->
wt_stmt p cls.(c_objs) cls.(c_mems) vars stmt ->
wt_mem me' p cls /\ wt_env ve' vars)
/\ (forall p me clsid f vs me' rvs,
stmt_call_eval p me clsid f vs me' rvs ->
forall p' cls fm,
wt_program p ->
find_class clsid p = Some(cls, p') ->
find_method f cls.(c_methods) = Some fm ->
wt_mem me p' cls ->
Forall2 (fun v xt => wt_valo v (snd xt)) vs fm.(m_in) ->
wt_mem me' p' cls
/\ Forall2 (fun v yt => wt_valo v (snd yt)) rvs fm.(m_out)).
Proof.
apply stmt_eval_call_ind.
-
intros *
Hexp cls vars Hndup WTp (
WTm &
WTe)
WTstmt.
split;
auto.
inv WTstmt.
inversion_clear WTm as [? ? ?
WTmv WTmi].
eapply pres_sem_exp with (1:=
WTmv) (2:=
WTe)
in Hexp;
auto.
eapply wt_env_add;
eauto.
-
intros *
Hexp cls vars Hndup WTp (
WTm &
WTe)
WTstmt.
split;
auto.
inv WTstmt.
inversion_clear WTm as [? ? ?
WTmv WTmi].
eapply pres_sem_exp with (1:=
WTmv) (2:=
WTe)
in Hexp;
auto.
constructor.
+
eapply wt_env_add;
eauto.
apply fst_NoDupMembers.
now apply NoDup_app_weaken with (1:=
cls.(
c_nodup)).
+
apply Forall_impl_In with (2:=
WTmi).
inversion 2;
now eauto using wt_mem_inst.
-
intros p *
Hevals Hcall IH
cls vars Hndups WTp (
WTm &
WTe)
WTstmt.
inv WTstmt.
edestruct IH;
eauto;
clear IH;
simpl.
+
unfold instance_match;
destruct (
find_inst o me)
eqn:
Hmfind;
auto.
inversion_clear WTm as [? ? ?
WTv WTi].
eapply Forall_forall in WTi;
eauto.
inversion_clear WTi as [? ? ? ?
Hmfind'|? ? ? ? ? ? ?
Hmfind'
Hcfind'
WTm];
rewrite Hmfind'
in Hmfind;
try discriminate.
match goal with Hcfind:
find_class _ _ =
Some (
_,
p') |-
_ =>
simpl in Hcfind';
rewrite Hcfind in Hcfind'
end.
injection Hmfind;
injection Hcfind'.
intros;
subst.
assumption.
+
rewrite Forall2_swap_args in Hevals.
match goal with H:
Forall2 _ es fm.(
m_in) |-
_ =>
rename H into Hes end.
apply all_In_Forall2.
now rewrite <-(
Forall2_length _ _ _ Hes), (
Forall2_length _ _ _ Hevals).
intros x v Hin.
apply Forall2_chain_In'
with (1:=
Hevals) (2:=
Hes)
in Hin.
destruct Hin as (
e &
Hexp &
Hty &
Hxy &
Hyv).
rewrite <-
Hty.
apply in_combine_r in Hxy.
match goal with H:
Forall _ es |-
_ =>
apply Forall_forall with (1:=
H)
in Hxy end.
eapply pres_sem_expo';
eauto;
split;
eauto.
-
intros p menv env s1 s2
*
Hstmt1 IH1 Hstmt2 IH2 cls vars Hndups WTp WTs WTstmt.
inv WTstmt.
edestruct IH1 as (
WTm1 &
WTe1);
eauto.
assert (
wt_state p me1 ve1 cls vars)
as WTs1;
auto;
split;
auto.
-
intros prog me ve cond v b st sf env'
menv'
Hexp Hvtb Hstmt IH cls vars Hndups WTp WTs WTstmt.
apply IH;
auto.
inv WTstmt.
destruct b;
auto.
-
intros;
auto.
-
intros *
Hfindc Hfindm Hlvos Hstmt IH Hrvs
p''
cls''
fm''
WTp Hfindc'
Hfindm'
WTmem WTv.
rewrite Hfindc in Hfindc';
injection Hfindc';
intros;
subst cls''
p'';
clear Hfindc'.
rewrite Hfindm in Hfindm';
injection Hfindm';
intros;
subst fm'';
clear Hfindm'.
destruct (
wt_program_find_class _ _ _ _ WTp Hfindc)
as (
WTc &
WTp').
edestruct IH with (
vars :=
meth_vars fm);
eauto.
+
apply m_nodupvars.
+
split;
eauto.
+
apply wt_class_find_method with (1:=
WTc) (2:=
Hfindm).
+
split;
auto.
rewrite Forall2_map_1 in Hrvs.
apply Forall2_swap_args in Hrvs.
eapply Forall2_impl_In with (2:=
Hrvs).
intros v x Hvin Hxin Hxv.
destruct x as (
x &
ty).
simpl in *.
destruct v;
simpl;
auto.
eapply venv_find_wt_val with (3:=
Hxv);
eauto using in_or_app.
Qed.
Lemma pres_sem_stmt:
forall p cls vars stmt me ve me' ve',
NoDupMembers vars ->
wt_program p ->
wt_state p me ve cls vars ->
wt_stmt p cls.(c_objs) cls.(c_mems) vars stmt ->
stmt_eval p me ve stmt (me', ve') ->
wt_mem me' p cls /\ wt_env ve' vars.
Proof.
intros.
eapply ((
proj1 pres_sem_stmt')
_ _ _ _ (
me',
ve'));
eauto.
Qed.
Lemma pres_sem_stmt_call:
forall p clsid p' cls f fm me vs me' rvs,
wt_program p ->
find_class clsid p = Some(cls, p') ->
find_method f cls.(c_methods) = Some fm ->
wt_mem me p' cls ->
Forall2 (fun vo xt => wt_valo vo (snd xt)) vs fm.(m_in) ->
stmt_call_eval p me clsid f vs me' rvs ->
wt_mem me' p' cls
/\ Forall2 (fun vo yt => wt_valo vo (snd yt)) rvs fm.(m_out).
Proof.
intros;
eapply (
proj2 pres_sem_stmt');
eauto.
Qed.
Lemma pres_loop_call_spec:
forall n prog cid c prog' fid f ins outs me,
wt_program prog ->
find_class cid prog = Some (c, prog') ->
find_method fid c.(c_methods) = Some f ->
(forall n, Forall2 (fun vo xt => wt_valo vo (snd xt)) (ins n) f.(m_in)) ->
wt_mem me prog' c ->
loop_call prog cid fid ins outs 0 me ->
exists me_n,
loop_call prog cid fid ins outs n me_n
/\ wt_mem me_n prog' c
/\ Forall2 (fun vo xt => wt_valo vo (snd xt)) (outs n) f.(m_out).
Proof.
induction n;
intros * ?????
Loop.
-
exists me;
split;
auto;
split;
auto.
inv Loop;
eapply pres_sem_stmt_call;
eauto.
-
edestruct IHn as (
me_n &
Loop_n & ? & ?);
eauto.
inversion_clear Loop_n as [????
Loop_Sn].
assert (
wt_mem me'
prog'
c)
by (
eapply pres_sem_stmt_call;
eauto).
eexists;
split;
eauto;
split;
auto.
inv Loop_Sn.
eapply pres_sem_stmt_call;
eauto.
Qed.
Corollary pres_loop_call:
forall prog cid c prog' fid f ins outs me,
wt_program prog ->
find_class cid prog = Some (c, prog') ->
find_method fid c.(c_methods) = Some f ->
(forall n, Forall2 (fun vo xt => wt_valo vo (snd xt)) (ins n) f.(m_in)) ->
wt_mem me prog' c ->
loop_call prog cid fid ins outs 0 me ->
forall n, Forall2 (fun vo xt => wt_valo vo (snd xt)) (outs n) f.(m_out).
Proof.
Lemma wt_program_app:
forall cls cls',
wt_program (cls ++ cls') ->
wt_program cls'.
Proof.
induction cls; inversion 1; auto.
Qed.
Remark wt_program_not_class_in:
forall pre post o c cid,
wt_program (pre ++ c :: post) ->
In (o, cid) c.(c_objs) ->
find_class cid pre = None.
Proof.
Remark wt_program_not_same_name:
forall post o c cid,
wt_program (c :: post) ->
In (o, cid) c.(c_objs) ->
cid <> c.(c_name).
Proof.
intros *
WTp Hin Hc'.
rewrite Hc'
in Hin;
clear Hc'.
inversion_clear WTp as [|? ?
WTc WTp'
Hnodup];
clear WTp'.
inversion_clear WTc as [
Ho Hm].
apply Forall_forall with (1:=
Ho)
in Hin.
apply not_None_is_Some in Hin.
destruct Hin as ((
cls,
p') &
Hin).
simpl in Hin.
rewrite <-(
find_class_name _ _ _ _ Hin)
in *.
apply find_class_In in Hin.
eapply Forall_forall in Hin;
eauto.
now apply Hin.
Qed.
Inductive suffix: program -> program -> Prop :=
suffix_intro: forall p p',
suffix p (p' ++ p).
Lemma suffix_refl:
forall p, suffix p p.
Proof.
intro;
rewrite <-
app_nil_l;
constructor.
Qed.
Hint Resolve suffix_refl.
Add Parametric Relation: program suffix
reflexivity proved by suffix_refl
as suffix_rel.
Lemma suffix_cons:
forall cls prog' prog,
suffix (cls :: prog') prog ->
suffix prog' prog.
Proof.
intros *
Hsub.
inv Hsub.
rewrite <-
app_last_app.
constructor.
Qed.
Remark find_class_sub_same:
forall prog1 prog2 clsid cls prog',
find_class clsid prog2 = Some (cls, prog') ->
wt_program prog1 ->
suffix prog2 prog1 ->
find_class clsid prog1 = Some (cls, prog').
Proof.
intros *
Hfind WD Sub.
inv Sub.
induction p'
as [|
cls'
p'];
simpl;
auto.
inversion_clear WD as [|? ?
WTc WTp Hnodup].
specialize (
IHp'
WTp).
destruct (
ident_eq_dec cls'.(
c_name)
clsid)
as [
He|
Hne].
-
rewrite He in *;
clear He.
rewrite <-(
find_class_name _ _ _ _ IHp')
in *.
apply find_class_In in IHp'.
eapply Forall_forall in IHp';
eauto;
contradiction.
-
apply ident_eqb_neq in Hne.
now rewrite Hne,
IHp'.
Qed.
Lemma find_class_sub:
forall prog clsid cls prog',
find_class clsid prog = Some (cls, prog') ->
suffix prog' prog.
Proof.
Lemma wt_stmt_sub:
forall prog prog' insts mems vars s,
wt_stmt prog' insts mems vars s ->
wt_program prog ->
suffix prog' prog ->
wt_stmt prog insts mems vars s.
Proof.
Lemma wt_mem_inst_sub:
forall prog prog' mem oc,
wt_mem_inst mem prog' oc ->
wt_program prog ->
suffix prog' prog ->
wt_mem_inst mem prog oc.
Proof.
Hint Resolve wt_mem_inst_sub.
Lemma wt_mem_sub:
forall prog prog' c mem,
wt_mem mem prog' c ->
wt_program prog ->
suffix prog' prog ->
wt_mem mem prog c.
Proof.
induction 1
as [? ? ? ?
WTmem_inst];
intros *
Sub.
constructor;
auto.
induction (
c_objs cl)
as [|(
o,
c)];
inv WTmem_inst;
auto.
constructor;
eauto.
Qed.
Hint Constructors suffix.
Lemma stmt_call_eval_suffix:
forall p p' me clsid f vs ome rvs,
stmt_call_eval p me clsid f vs ome rvs ->
wt_program p' ->
suffix p p' ->
stmt_call_eval p' me clsid f vs ome rvs.
Proof.
Hint Resolve stmt_call_eval_suffix.
Lemma stmt_eval_suffix:
forall p p' me ve s S,
stmt_eval p me ve s S ->
wt_program p' ->
suffix p p' ->
stmt_eval p' me ve s S.
Proof.
intros * Ev ? ?.
induction Ev; econstructor; eauto.
Qed.
Hint Resolve stmt_eval_suffix.
Lemma find_class_chained:
forall prog c1 c2 cls prog' cls' prog'',
wt_program prog ->
find_class c1 prog = Some (cls, prog') ->
find_class c2 prog' = Some (cls', prog'') ->
find_class c2 prog = Some (cls', prog'').
Proof.
induction prog as [|
c prog IH]; [
now inversion 2|].
intros *
WTp Hfc Hfc'.
simpl in Hfc.
inversion_clear WTp as [|? ?
WTc WTp'
Hnodup].
pose proof (
find_class_In _ _ _ _ Hfc')
as Hfcin.
pose proof (
find_class_name _ _ _ _ Hfc')
as Hc2.
destruct (
ident_eq_dec c.(
c_name)
c1)
as [
He|
Hne].
-
rewrite He,
ident_eqb_refl in Hfc.
injection Hfc;
intros R1 R2;
rewrite <-
R1, <-
R2 in *;
clear Hfc R1 R2.
assert (
c.(
c_name) <>
cls'.(
c_name))
as Hne.
+
intro Hn.
apply in_split in Hfcin.
destruct Hfcin as (
ws &
xs &
Hfcin).
rewrite Hfcin in Hnodup.
apply Forall_app_weaken in Hnodup;
inv Hnodup.
contradiction.
+
simpl.
apply ident_eqb_neq in Hne.
rewrite Hc2 in Hne.
now rewrite Hne.
-
apply ident_eqb_neq in Hne.
rewrite Hne in Hfc.
clear Hne.
rewrite <- (
IH _ _ _ _ _ _ WTp'
Hfc Hfc').
apply find_class_app in Hfc.
destruct Hfc as (
cls'' &
Hprog &
Hfc).
rewrite Hprog in Hnodup.
assert (
c.(
c_name) <>
cls'.(
c_name))
as Hne.
+
intro Hn.
apply in_split in Hfcin.
destruct Hfcin as (
ws &
xs &
Hfcin).
rewrite Hfcin in Hnodup.
apply Forall_app_weaken in Hnodup.
rewrite app_comm_cons in Hnodup.
apply Forall_app_weaken in Hnodup;
inv Hnodup.
contradiction.
+
simpl.
rewrite <-
Hc2.
apply ident_eqb_neq in Hne.
now rewrite Hne.
Qed.
Lemma wt_mem_chained:
forall prog prog' c mem ownerid owner,
wt_program prog ->
find_class ownerid prog = Some (owner, prog') ->
wt_mem mem prog' c ->
wt_mem mem prog c.
Proof.
Hint Resolve wt_mem_chained.
Lemma wt_mem_skip:
forall prog prog' cid c mem,
wt_program prog ->
find_class cid prog = Some (c, prog') ->
wt_mem mem prog c ->
wt_mem mem prog' c.
Proof.
Hint Resolve wt_mem_skip.
Lemma find_class_rev:
forall prog n c prog',
wt_program prog ->
find_class n prog = Some (c, prog') ->
exists prog'', find_class n (rev prog) = Some (c, prog'').
Proof.
induction prog as [|
c'];
simpl;
intros *
WTP Find;
try discriminate.
inversion_clear WTP as [|? ?
Hwtc Hwtp Hndup].
erewrite find_class_app';
eauto.
destruct (
ident_eqb c'.(
c_name)
n)
eqn:
Heq.
-
inv Find.
apply ident_eqb_eq in Heq.
rewrite Heq in *.
erewrite not_In_find_class;
eauto.
+
simpl.
apply ident_eqb_eq in Heq.
rewrite Heq;
econstructor;
eauto.
+
rewrite map_rev.
intro Hin.
apply in_rev,
in_map_iff in Hin as (?&?&
Hin).
eapply Forall_forall in Hin;
eauto;
congruence.
-
apply ident_eqb_neq in Heq.
edestruct IHprog as (? &
Find');
eauto.
rewrite Find'.
econstructor;
eauto.
Qed.
End OBCTYPING.
Module ObcTypingFun
(Import Ids : IDS)
(Import Op : OPERATORS)
(Import OpAux : OPERATORS_AUX Op)
(Import Syn : OBCSYNTAX Ids Op OpAux)
(Import Sem : OBCSEMANTICS Ids Op OpAux Syn)
<: OBCTYPING Ids Op OpAux Syn Sem.
Include OBCTYPING Ids Op OpAux Syn Sem.
End ObcTypingFun.