From Velus Require Import Common.
From Velus Require Import CommonProgram.
From Velus Require Import CommonTyping.
From Velus Require Import Environment.
From Velus Require Import Operators.
From Velus Require Import Clocks.
From Velus Require Import Lustre.StaticEnv.
From Velus Require Import Lustre.LSyntax.
From Coq Require Import List.
Import List.ListNotations.
Open Scope list_scope.
From Coq Require Import Morphisms.
From Coq Require Import Permutation.
From Coq Require Import Program.Basics Program.Wf.
Open Scope program_scope.
Lustre clocking
Module Type LCLOCKING
(
Import Ids :
IDS)
(
Import Op :
OPERATORS)
(
Import OpAux :
OPERATORS_AUX Ids Op)
(
Import Cks :
CLOCKS Ids Op OpAux)
(
Import Senv :
STATICENV Ids Op OpAux Cks)
(
Import Syn :
LSYNTAX Ids Op OpAux Cks Senv).
Definition ident_map :=
ident ->
option ident.
Definition WellInstantiated (
bck :
clock) (
sub :
ident_map)
(
xc :
ident *
clock) (
nc :
nclock) :
Prop :=
sub (
fst xc) =
snd nc
/\
instck bck sub (
snd xc) =
Some (
fst nc).
Section WellClocked.
Context {
PSyn :
list decl ->
block ->
Prop}.
Context {
prefs :
PS.t}.
Variable G : @
global PSyn prefs.
Variable Γ :
static_env.
Inductive wc_exp :
exp ->
Prop :=
|
wc_Econst:
forall c,
wc_exp (
Econst c)
|
wc_Eenum:
forall x ty,
wc_exp (
Eenum x ty)
|
wc_Evar:
forall x ty ck,
HasClock Γ
x ck ->
wc_exp (
Evar x (
ty,
ck))
|
wc_Elast:
forall x ty ck,
HasClock Γ
x ck ->
IsLast Γ
x ->
wc_exp (
Elast x (
ty,
ck))
|
wc_Eunop:
forall op e ty ck,
wc_exp e ->
clockof e = [
ck] ->
wc_exp (
Eunop op e (
ty,
ck))
|
wc_Ebinop:
forall op e1 e2 ty ck,
wc_exp e1 ->
wc_exp e2 ->
clockof e1 = [
ck] ->
clockof e2 = [
ck] ->
wc_exp (
Ebinop op e1 e2 (
ty,
ck))
|
wc_Eextcall:
forall f es tyout ck,
Forall wc_exp es ->
Forall (
eq ck) (
clocksof es) ->
clocksof es <> [] ->
wc_exp (
Eextcall f es (
tyout,
ck))
|
wc_Efby:
forall e0s es anns,
Forall wc_exp e0s ->
Forall wc_exp es ->
Forall2 eq (
map snd anns) (
clocksof e0s) ->
Forall2 eq (
map snd anns) (
clocksof es) ->
wc_exp (
Efby e0s es anns)
|
wc_Earrow:
forall e0s es anns,
Forall wc_exp e0s ->
Forall wc_exp es ->
Forall2 eq (
map snd anns) (
clocksof e0s) ->
Forall2 eq (
map snd anns) (
clocksof es) ->
wc_exp (
Earrow e0s es anns)
|
wc_Ewhen:
forall es x tx ty b tys ck,
HasClock Γ
x ck ->
Forall wc_exp es ->
Forall (
eq ck) (
clocksof es) ->
length tys =
length (
clocksof es) ->
wc_exp (
Ewhen es (
x,
tx)
b (
tys, (
Con ck x (
ty,
b))))
|
wc_Emerge:
forall x tx es tys ck,
HasClock Γ
x ck ->
es <>
nil ->
Forall (
fun es =>
Forall wc_exp (
snd es))
es ->
Forall (
fun '(
i,
es) =>
Forall (
eq (
Con ck x (
tx,
i))) (
clocksof es))
es ->
Forall (
fun es =>
length tys =
length (
clocksof (
snd es)))
es ->
wc_exp (
Emerge (
x,
tx)
es (
tys,
ck))
|
wc_Ecase:
forall e es d tys ck,
wc_exp e ->
clockof e = [
ck] ->
es <>
nil ->
Forall (
fun es =>
Forall wc_exp (
snd es))
es ->
Forall (
fun es =>
Forall (
eq ck) (
clocksof (
snd es)))
es ->
Forall (
fun es =>
length tys =
length (
clocksof (
snd es)))
es ->
(
forall d0,
d =
Some d0 ->
Forall wc_exp d0) ->
(
forall d0,
d =
Some d0 ->
Forall (
eq ck) (
clocksof d0)) ->
(
forall d0,
d =
Some d0 ->
length tys =
length (
clocksof d0)) ->
wc_exp (
Ecase e es d (
tys,
ck))
|
wc_Eapp:
forall f es er anns n bck sub,
Forall wc_exp es ->
Forall wc_exp er ->
find_node f G =
Some n ->
Forall2 (
WellInstantiated bck sub) (
map (
fun '(
x, (
_,
ck,
_)) => (
x,
ck))
n.(
n_in)) (
nclocksof es) ->
Forall2 (
WellInstantiated bck sub) (
map (
fun '(
x, (
_,
ck,
_,
_)) => (
x,
ck))
n.(
n_out)) (
map (
fun '(
_,
ck) => (
ck,
None))
anns) ->
Forall (
fun e =>
exists ck,
clockof e = [
ck])
er ->
wc_exp (
Eapp f es er anns).
Inductive wc_equation :
equation ->
Prop :=
|
wc_EqApp :
forall xs f es er anns n bck sub,
Forall wc_exp es ->
Forall wc_exp er ->
find_node f G =
Some n ->
Forall2 (
WellInstantiated bck sub) (
map (
fun '(
x, (
_,
ck,
_)) => (
x,
ck))
n.(
n_in)) (
nclocksof es) ->
Forall3 (
fun xck ck2 x2 =>
WellInstantiated bck sub xck (
ck2,
Some x2)) (
map (
fun '(
x, (
_,
ck,
_,
_)) => (
x,
ck))
n.(
n_out)) (
map snd anns)
xs ->
Forall (
fun e =>
exists ck,
clockof e = [
ck])
er ->
Forall2 (
HasClock Γ)
xs (
map snd anns) ->
wc_equation (
xs, [
Eapp f es er anns])
|
wc_Eq :
forall xs es,
Forall wc_exp es ->
Forall2 (
HasClock Γ)
xs (
clocksof es) ->
wc_equation (
xs,
es).
End WellClocked.
Inductive wc_scope {
A} (
P_wc :
static_env ->
A ->
Prop) {
PSyn prefs} (
G: @
global PSyn prefs) :
static_env ->
scope A ->
Prop :=
|
wc_Scope :
forall Γ
locs blks,
let Γ' := Γ ++
senv_of_decls locs in
Forall (
wc_clock (
idck Γ')) (
map (
fun '(
_, (
_,
ck,
_,
_)) =>
ck)
locs) ->
Forall (
fun '(
_, (
_,
ck,
_,
o)) =>
LiftO True (
fun '(
e,
_) =>
wc_exp G Γ'
e /\
clockof e = [
ck])
o)
locs ->
P_wc Γ'
blks ->
wc_scope P_wc G Γ (
Scope locs blks).
Inductive wc_branch {
A} (
P_wc :
A ->
Prop) :
branch A ->
Prop :=
|
wc_Branch :
forall caus blks,
P_wc blks ->
wc_branch P_wc (
Branch caus blks).
Inductive wc_block {
PSyn prefs} (
G: @
global PSyn prefs) :
static_env ->
block ->
Prop :=
|
wc_Beq :
forall Γ
eq,
wc_equation G Γ
eq ->
wc_block G Γ (
Beq eq)
|
wc_Breset :
forall Γ
blocks er ck,
Forall (
wc_block G Γ)
blocks ->
wc_exp G Γ
er ->
clockof er = [
ck] ->
wc_block G Γ (
Breset blocks er)
|
wc_Bswitch :
forall Γ Γ'
ec branches ck,
wc_exp G Γ
ec ->
clockof ec = [
ck] ->
branches <> [] ->
(
forall x ck',
HasClock Γ'
x ck' ->
HasClock Γ
x ck /\
ck' =
Cbase) ->
(
forall x,
IsLast Γ'
x ->
IsLast Γ
x) ->
Forall (
fun blks =>
wc_branch (
Forall (
wc_block G Γ')) (
snd blks))
branches ->
wc_block G Γ (
Bswitch ec branches)
|
wc_Bauto :
forall Γ Γ'
type ini oth states ck,
wc_clock (
idck Γ)
ck ->
states <> [] ->
(
forall x ck',
HasClock Γ'
x ck' ->
HasClock Γ
x ck /\
ck' =
Cbase) ->
(
forall x,
IsLast Γ'
x ->
IsLast Γ
x) ->
Forall (
fun '(
e,
_) =>
wc_exp G Γ'
e /\
clockof e = [
Cbase])
ini ->
Forall (
fun blks =>
wc_branch
(
fun blks =>
Forall (
fun '(
e, (
t,
_)) =>
wc_exp G Γ'
e /\
clockof e = [
Cbase]) (
fst blks)
/\
wc_scope (
fun Γ'
blks =>
Forall (
wc_block G Γ') (
fst blks)
/\
Forall (
fun '(
e, (
t,
_)) =>
wc_exp G Γ'
e /\
clockof e = [
Cbase]) (
snd blks))
G Γ' (
snd blks))
(
snd blks))
states ->
wc_block G Γ (
Bauto type ck (
ini,
oth)
states)
|
wc_Blocal :
forall Γ
s,
wc_scope (
fun Γ' =>
Forall (
wc_block G Γ'))
G Γ
s ->
wc_block G Γ (
Blocal s).
Inductive wc_node {
PSyn prefs} (
G: @
global PSyn prefs) : @
node PSyn prefs ->
Prop :=
|
wc_Node :
forall n,
let Γ :=
senv_of_ins n.(
n_in) ++
senv_of_decls n.(
n_out)
in
wc_env (
map (
fun '(
x, (
_,
ck,
_)) => (
x,
ck))
n.(
n_in)) ->
wc_env (
map (
fun '(
x, (
_,
ck,
_)) => (
x,
ck))
n.(
n_in) ++
map (
fun '(
x, (
_,
ck,
_,
_)) => (
x,
ck))
n.(
n_out)) ->
Forall (
fun '(
_, (
_,
ck,
_,
o)) =>
LiftO True (
fun '(
e,
_) =>
wc_exp G Γ
e /\
clockof e = [
ck])
o)
n.(
n_out) ->
wc_block G Γ
n.(
n_block) ->
wc_node G n.
Definition wc_global {
PSyn prefs} : @
global PSyn prefs ->
Prop :=
wt_program wc_node.
Basic properties of clocking
Global Hint Constructors wc_exp wc_equation wc_block wc_node :
lclocking.
Global Hint Unfold wc_global wc_env :
lclocking.
Ltac inv_exp :=
match goal with
|
H:
wc_exp _ _ _ |-
_ =>
inv H
end.
Ltac inv_scope :=
match goal with
|
H:
wc_scope _ _ _ _ |-
_ =>
inv H
end;
destruct_conjs;
subst.
Ltac inv_branch :=
match goal with
|
H:
wc_branch _ _ |-
_ =>
inv H
end;
destruct_conjs;
subst.
Ltac inv_block :=
match goal with
|
H:
wc_block _ _ _ |-
_ =>
inv H
end.
Lemma wc_global_NoDup {
PSyn prefs}:
forall (
g: @
global PSyn prefs),
wc_global g ->
NoDup (
map n_name (
nodes g)).
Proof.
Lemma wc_find_node {
PSyn prefs}:
forall (
G: @
global PSyn prefs)
f n,
wc_global G ->
find_node f G =
Some n ->
exists G',
wc_node G'
n.
Proof.
Global Instance wc_exp_Proper {
PSyn prefs}:
Proper (@
eq (@
global PSyn prefs) ==> @
Permutation _
==> @
eq exp ==>
iff)
wc_exp.
Proof.
intros G G'
HG env'
env Henv ??
He.
subst.
split;
intro H;
induction y using exp_ind2;
inv H;
econstructor;
simpl_Forall;
eauto;
match goal with
| |-
HasClock env'
_ _ =>
now rewrite Henv
| |-
HasClock env _ _ =>
now rewrite <-
Henv
| |-
IsLast env'
_ =>
now rewrite Henv
| |-
IsLast env _ =>
now rewrite <-
Henv
| |-
wc_clock _ _ =>
eapply wc_clock_incl; [|
eauto];
unfold idck;
now rewrite Henv
|
_ =>
idtac
end.
1,2:
intros *
Heq;
subst;
simpl in *.
1,2:
take (
forall (
d1 :
list exp),
_ ->
Forall (
wc_exp _ _)
_)
and specialize (
it _ eq_refl).
1,2:
simpl_Forall;
eauto.
Qed.
Global Instance wc_equation_Proper {
PSyn prefs}:
Proper (@
eq (@
global PSyn prefs) ==> @
Permutation _
==> @
eq equation ==>
iff)
wc_equation.
Proof with
auto.
intros G1 G2 HG env1 env2 Henv eq1 eq2 Heq;
subst.
destruct eq2 as (
xs &
es).
split;
intros [];
econstructor;
eauto.
1-10:
rewrite Forall_forall in *;
intros.
1-10:(
rewrite Henv in * ||
rewrite <-
Henv in * ||
idtac);
eauto.
1-4:
simpl_Forall; (
setoid_rewrite Henv ||
setoid_rewrite <-
Henv);
auto.
Qed.
Global Instance wc_block_Proper {
PSyn prefs}:
Proper (@
eq (@
global PSyn prefs) ==> @
Permutation _
==> @
eq block ==>
iff)
wc_block.
Proof with
auto.
intros G1 G2 HG env1 env2 Henv d1 d2 Heq;
subst.
revert env1 env2 Henv.
induction d2 using block_ind2;
split;
intros *
Hwc;
inv Hwc;
econstructor. 12,18:
instantiate (2:=Γ'). 23,29:
instantiate (1:=Γ').
all:
eauto.
1,4,7:
rewrite <-
Henv;
auto.
1,4,8:
rewrite Henv;
auto.
all:
simpl_Forall;
eauto;
intros.
all:
try rewrite <-
H;
try rewrite H;
eauto.
all:
unfold idck;
try (
rewrite <-
Henv ||
rewrite Henv);
auto.
1,2:
inv H2;
econstructor;
eauto;
simpl_Forall. 2,5:
destruct o as [(?&?)|];
simpl in *;
destruct_conjs;
auto;
split;
auto.
all:
try rewrite <-
H;
try rewrite H;
eauto.
all:
unfold idck; (
rewrite Henv||
rewrite <-
Henv);
auto.
Qed.
Global Instance wc_block_pointwise_Proper {
PSyn prefs}:
Proper (@
eq (@
global PSyn prefs) ==> @
Permutation _
==>
pointwise_relation _ iff)
wc_block.
Proof with
auto.
intros G1 G2 HG env1 env2 Henv d; subst. now rewrite Henv.
Qed.
Lemma wc_env_Is_free_in_clock_In :
forall vars x id ck,
wc_env vars ->
In (
x,
ck)
vars ->
Is_free_in_clock id ck ->
InMembers id vars.
Proof.
intros *
Hwenv Hin Hfree.
unfold wc_env in Hwenv.
eapply Forall_forall in Hin;
eauto;
simpl in Hin.
induction Hfree;
inv Hin;
eauto using In_InMembers.
Qed.
Lemma wc_env_has_Cbase':
forall vars x xck,
wc_env vars ->
In (
x,
xck)
vars ->
exists y,
In (
y,
Cbase)
vars.
Proof.
intros vars x xck WC Ix.
revert x Ix.
induction xck;
eauto.
intros;
eapply Forall_forall in WC;
eauto.
inv WC;
eauto.
Qed.
Lemma wc_env_has_Cbase:
forall vars,
wc_env vars ->
0 <
length vars ->
exists y,
In (
y,
Cbase)
vars.
Proof.
intros * Hwc Hl. destruct vars. now inv Hl.
destruct p. eapply wc_env_has_Cbase'; eauto. now left.
Qed.
Lemma WellInstantiated_parent :
forall bck sub cks lck,
Forall2 (
WellInstantiated bck sub)
cks lck ->
Forall (
fun ck =>
fst ck =
bck \/
clock_parent bck (
fst ck))
lck.
Proof.
Lemma WellInstantiated_bck :
forall vars bck sub lck,
wc_env vars ->
0 <
length vars ->
Forall2 (
WellInstantiated bck sub)
vars lck ->
In bck (
map stripname lck).
Proof.
intros *
Henv Hlen Wi.
apply wc_env_has_Cbase in Henv as [
x Hin];
auto.
pose proof (
Forall2_in_left _ _ _ _ Wi Hin)
as (
nc &?&?&
He).
simpl in *.
apply in_map_iff.
exists nc.
destruct nc.
simpl in *.
now inv He.
Qed.
Adding variables to the environment preserves clocking
Section incl.
Context {
PSyn :
list decl ->
block ->
Prop}.
Context {
prefs :
PS.t}.
Variable (
G : @
global PSyn prefs).
Lemma wc_exp_incl :
forall Γ Γ'
e,
(
forall x ck,
HasClock Γ
x ck ->
HasClock Γ'
x ck) ->
(
forall x,
IsLast Γ
x ->
IsLast Γ'
x) ->
wc_exp G Γ
e ->
wc_exp G Γ'
e .
Proof with
eauto with lclocking.
induction e using exp_ind2;
intros Hincl1 Hincl2 Hwc;
inv Hwc...
all:
econstructor;
simpl_Forall...
+
intros ?
Hin;
subst;
simpl in *.
specialize (
H11 _ eq_refl).
simpl_Forall...
Qed.
Lemma wc_equation_incl :
forall Γ Γ'
eq,
(
forall x ck,
HasClock Γ
x ck ->
HasClock Γ'
x ck) ->
(
forall x,
IsLast Γ
x ->
IsLast Γ'
x) ->
wc_equation G Γ
eq ->
wc_equation G Γ'
eq.
Proof with
eauto.
intros ?? [
xs es]
Hincl1 Hincl2 Hwc.
inv Hwc;
econstructor;
eauto.
1-5:
simpl_Forall;
eauto using wc_exp_incl.
Qed.
Lemma wc_scope_incl {
A}
P_wc :
forall Γ Γ'
locs (
blks:
A),
(
forall x ck,
HasClock Γ
x ck ->
HasClock Γ'
x ck) ->
(
forall x,
IsLast Γ
x ->
IsLast Γ'
x) ->
wc_scope P_wc G Γ (
Scope locs blks) ->
(
forall Γ Γ',
(
forall x ck,
HasClock Γ
x ck ->
HasClock Γ'
x ck) ->
(
forall x,
IsLast Γ
x ->
IsLast Γ'
x) ->
P_wc Γ
blks ->
P_wc Γ'
blks) ->
wc_scope P_wc G Γ' (
Scope locs blks).
Proof.
intros *
Incl1 Incl2 Wt Hind;
inv Wt;
subst Γ'0.
econstructor;
eauto;
simpl_Forall.
+
eapply wc_clock_incl;
eauto.
simpl_app.
intros ?
Hin.
repeat rewrite in_app_iff in *.
destruct Hin;
auto.
left.
simpl_In.
assert (
HasClock Γ'
i2 a0.(
clo))
by eauto with senv.
inv H0;
solve_In.
congruence.
+
destruct o as [(?&?)|];
simpl in *;
destruct_conjs;
auto.
split;
auto.
eapply wc_exp_incl; [| |
eauto].
*
repeat setoid_rewrite HasClock_app.
intros * [|];
eauto.
*
repeat setoid_rewrite IsLast_app.
intros * [|];
eauto.
+
eapply Hind; [| |
eauto].
*
repeat setoid_rewrite HasClock_app.
intros * [|];
eauto.
*
repeat setoid_rewrite IsLast_app.
intros * [|];
eauto.
Qed.
Lemma wc_block_incl :
forall d Γ Γ',
(
forall x ck,
HasClock Γ
x ck ->
HasClock Γ'
x ck) ->
(
forall x,
IsLast Γ
x ->
IsLast Γ'
x) ->
wc_block G Γ
d ->
wc_block G Γ'
d .
Proof.
induction d using block_ind2;
intros *
Incl1 Incl2 Wt;
inv Wt.
-
constructor.
eauto using wc_equation_incl.
-
econstructor;
eauto using wc_exp_incl.
simpl_Forall;
eauto.
-
eapply wc_Bswitch with (Γ':=Γ'0);
simpl_Forall;
eauto using wc_exp_incl.
intros.
edestruct H5;
eauto with senv.
-
eapply wc_Bauto with (Γ':=Γ'0);
simpl_Forall;
eauto using wc_exp_incl.
+
eapply wc_clock_incl; [|
eauto].
intros ??;
simpl_In.
assert (
HasClock Γ
i0 a0.(
clo))
as Hck by (
eauto with senv).
apply Incl1 in Hck.
inv Hck.
solve_In.
congruence.
+
intros.
edestruct H7;
eauto with senv.
-
constructor.
eapply wc_scope_incl;
eauto.
intros.
simpl_Forall;
eauto.
Qed.
End incl.
Validation
Section ValidateExpression.
Context {
PSyn :
list decl ->
block ->
Prop}.
Context {
prefs :
PS.t}.
Variable G : @
global PSyn prefs.
Variable venv venvl :
Env.t clock.
Variable env :
static_env.
Hypothesis Henv :
forall x ck,
Env.find x venv =
Some ck ->
HasClock env x ck.
Hypothesis Henvl :
forall x ck,
Env.find x venvl =
Some ck ->
HasClock env x ck /\
IsLast env x.
Open Scope option_monad_scope.
Definition check_var (
x :
ident) (
ck :
clock) :
bool :=
match Env.find x venv with
|
None =>
false
|
Some xc =>
ck ==
b xc
end.
Definition check_last (
x :
ident) (
ck :
clock) :
bool :=
match Env.find x venvl with
|
None =>
false
|
Some xc =>
ck ==
b xc
end.
Definition check_paired_clocks (
nc1 nc2 :
clock) (
tc :
ann) :
bool :=
match tc with
| (
t,
c) => (
nc1 ==
b c) && (
nc2 ==
b c)
end.
Definition check_merge_clocks {
A} (
x :
ident) (
tx :
type) (
ck :
clock) (
ncs :
list (
enumtag *
list clock)) (
n :
nat) (
tys :
list A) :
bool :=
forallb (
fun '(
i,
ncs) =>
forallb (
fun ck' =>
ck' ==
b (
Con ck x (
tx,
i)))
ncs
&& (
length ncs ==
b length tys))
ncs.
Definition check_case_clocks {
A} (
ck :
clock) (
ncs :
list (
list clock)) (
tys :
list A) :
bool :=
forallb (
fun ncs =>
forallb (
fun ck' =>
ck' ==
b ck)
ncs
&& (
length ncs ==
b length tys))
ncs.
Definition add_isub
(
sub :
Env.t ident)
(
nin : (
ident * (
type *
clock *
ident)))
(
nc :
nclock) :
Env.t ident :=
match snd nc,
nin with
|
Some y, (
x, (
xt,
xc,
xcaus)) =>
Env.add x y sub
|
None,
_ =>
sub
end.
Definition add_osub
(
sub :
Env.t ident)
(
nout :
decl)
(
tnc :
type *
nclock) :
Env.t ident :=
let '(
x, (
ty,
ck,
cx,
_)) :=
nout in
add_isub sub (
x, (
ty,
ck,
cx)) (
snd tnc).
Section CheckInst.
Variables (
bck :
clock) (
sub :
Env.t ident).
Fixpoint check_inst (
ick ck :
clock) :
bool :=
match ick with
|
Cbase => (
ck ==
b bck)
|
Con ick'
x xb =>
match ck,
Env.find x sub with
|
Con ck'
y yb,
Some sx =>
(
yb ==
b xb) && (
y ==
b sx) && (
check_inst ick'
ck')
|
_,
_ =>
false
end
end.
End CheckInst.
Fixpoint find_base_clock (
ick ck :
clock) :
option clock :=
match ick with
|
Cbase =>
Some ck
|
Con ick'
_ _ =>
match ck with
|
Cbase =>
None
|
Con ck'
_ _ =>
find_base_clock ick'
ck'
end
end.
Definition check_reset (
ckr :
list (
list clock)) :
bool :=
forallb (
fun cks =>
match cks with [
ck] =>
true |
_ =>
false end)
ckr.
Lemma nclockof_clockof:
forall e xs ys,
nclockof e =
xs ->
ys =
map fst xs ->
clockof e =
ys.
Proof.
Fixpoint check_exp (
e :
exp) :
option (
list clock) :=
match e with
|
Econst c =>
Some [
Cbase]
|
Eenum _ _ =>
Some [
Cbase]
|
Evar x (
xt,
xc) =>
if (
check_var x xc)
then Some [
xc]
else None
|
Elast x (
xt,
xc) =>
if (
check_last x xc)
then Some [
xc]
else None
|
Eunop op e (
xt,
xc) =>
do nce <-
assert_singleton (
check_exp e);
if xc ==
b nce then Some [
xc]
else None
|
Ebinop op e1 e2 (
xt,
xc) =>
do nc1 <-
assert_singleton (
check_exp e1);
do nc2 <-
assert_singleton (
check_exp e2);
if (
xc ==
b nc1) && (
xc ==
b nc2)
then Some [
xc]
else None
|
Eextcall f es (
_,
ck) =>
do ncs <-
oconcat (
map check_exp es);
if forallb (
fun ck' =>
ck' ==
b ck)
ncs &&
negb (
is_nil ncs)
then Some [
ck]
else None
|
Efby e0s es anns =>
do nc0s <-
oconcat (
map check_exp e0s);
do ncs <-
oconcat (
map check_exp es);
if forall3b check_paired_clocks nc0s ncs anns
then Some (
map snd anns)
else None
|
Earrow e0s es anns =>
do nc0s <-
oconcat (
map check_exp e0s);
do ncs <-
oconcat (
map check_exp es);
if forall3b check_paired_clocks nc0s ncs anns
then Some (
map snd anns)
else None
|
Ewhen es (
x,
_)
b (
tys,
nc) =>
match nc with
|
Con xc y (
_,
yb) =>
do nces <-
oconcat (
map check_exp es);
if (
x ==
b y) && (
b ==
b yb) && (
check_var x xc)
&& (
forall2b (
fun c _ =>
xc ==
b c)
nces tys)
then Some (
map (
fun _ =>
nc)
tys)
else None
|
_ =>
None
end
|
Emerge (
x,
tx)
es (
tys,
ck) =>
do ncs <-
omap (
fun es =>
oconcat (
map check_exp (
snd es)))
es;
if check_var x ck &&
check_merge_clocks x tx ck (
combine (
map fst es)
ncs) (
length es)
tys
&& (
negb (
is_nil es))
then Some (
map (
fun _ =>
ck)
tys)
else None
|
Ecase e brs d (
tys,
ck) =>
do nds <-
or_default_with (
Some []) (
fun d =>
do nds <-
oconcat (
map check_exp d);
Some [
nds])
d;
do ncs <-
omap (
fun es =>
oconcat (
map check_exp (
snd es)))
brs;
do ce <-
assert_singleton (
check_exp e);
if (
ce ==
b ck) &&
check_case_clocks ck (
nds++
ncs)
tys
&& (
negb (
is_nil brs))
then Some (
map (
fun _ =>
ck)
tys)
else None
|
Eapp f es er anns =>
do n <-
find_node f G;
do _x <-
oconcat (
map check_exp es);
do nr <-
omap check_exp er;
do nin0 <-
option_map (
fun '(
_, (
_,
ck,
_)) =>
ck) (
hd_error n.(
n_in));
let nces :=
nclocksof es in
do nces0 <-
option_map fst (
hd_error nces);
do bck <-
find_base_clock nin0 nces0;
let nanns :=
map (
fun '(
ty,
ck) => (
ty, (
ck,
None)))
anns in
let isub :=
fold_left2 add_isub n.(
n_in)
nces (
Env.empty ident)
in
let sub :=
fold_left2 add_osub n.(
n_out)
nanns isub in
if (
forall2b (
fun '(
_, (
_,
ck,
_)) '(
ck',
_) =>
check_inst bck sub ck ck')
n.(
n_in)
nces)
&& (
forall2b (
fun '(
_, (
_,
ck,
_,
_)) '(
_, (
ck',
_)) =>
check_inst bck sub ck ck')
n.(
n_out)
nanns)
&& (
check_reset nr)
then Some (
map snd anns)
else None
end.
Definition check_equation (
eq :
equation) :
bool :=
let '(
xs,
es) :=
eq in
match es with
| [
Eapp f es er anns] =>
match
(
do n <-
find_node f G;
do _x <-
oconcat (
map check_exp es);
do nr <-
omap check_exp er;
do nin0 <-
option_map (
fun '(
_, (
_,
ck,
_)) =>
ck) (
hd_error n.(
n_in));
let nces :=
nclocksof es in
do nces0 <-
option_map fst (
hd_error nces);
do bck <-
find_base_clock nin0 nces0;
let nanns :=
map (
fun '((
ty,
ck),
x) => (
ty, (
ck,
Some x))) (
combine anns xs)
in
let isub :=
fold_left2 add_isub n.(
n_in)
nces (
Env.empty ident)
in
let sub :=
fold_left2 add_osub n.(
n_out)
nanns isub in
if (
forall2b (
fun '(
_, (
_,
ck,
_)) '(
ck',
_) =>
check_inst bck sub ck ck')
n.(
n_in)
nces)
&& (
length xs ==
b length anns)
&& (
forall2b (
fun '(
_, (
_,
ck,
_,
_)) '(
_,
ck') =>
check_inst bck sub ck ck')
n.(
n_out)
anns)
&& (
check_reset nr)
then Some (
map snd anns)
else None)
with
|
None =>
false
|
Some ncks =>
forall2b check_var xs ncks
end
|
_ =>
match oconcat (
map check_exp es)
with
|
None =>
false
|
Some ncks =>
forall2b check_var xs ncks
end
end.
Lemma check_var_correct:
forall x ck,
check_var x ck =
true ->
HasClock env x ck.
Proof.
Corollary check_vars_correct:
forall xs cks,
forall2b check_var xs cks =
true ->
Forall2 (
HasClock env)
xs cks.
Proof.
Lemma check_last_correct:
forall x ck,
check_last x ck =
true ->
HasClock env x ck /\
IsLast env x.
Proof.
Lemma check_paired_clocks_correct:
forall cks1 cks2 anns,
forall3b check_paired_clocks cks1 cks2 anns =
true ->
cks1 =
map snd anns
/\
cks2 =
map snd anns.
Proof.
setoid_rewrite forall3b_Forall3.
induction 1
as [|
ck1 ck2 (
ty,
ck)
cks1 cks2 anns
IH1 IH2 (
Hcks1 &
Hcks2)];
subst;
simpl in *;
eauto.
rewrite Bool.andb_true_iff in IH1.
setoid_rewrite equiv_decb_equiv in IH1.
destruct IH1 as (
Hck1 &
Hck2).
inv Hck1;
inv Hck2.
f_equal;
auto.
Qed.
Lemma check_merge_clocks_correct:
forall {
A}
x tx ck ncs n (
tys :
list A),
check_merge_clocks x tx ck ncs n tys =
true ->
Forall (
fun '(
i,
ncs) =>
Forall (
fun ck' => (
Con ck x (
tx,
i)) =
ck')
ncs)
ncs /\
Forall (
fun '(
_,
ncs) =>
length ncs =
length tys)
ncs.
Proof.
Lemma check_case_clocks_correct:
forall {
A}
ck ncs (
tys :
list A),
check_case_clocks ck ncs tys =
true ->
Forall (
Forall (
fun ck' =>
ck =
ck'))
ncs /\
Forall (
fun ncs =>
length ncs =
length tys)
ncs.
Proof.
Lemma oconcat_map_check_exp':
forall {
f}
es cks,
(
forall e cks,
In e es ->
f e =
Some cks ->
wc_exp G env e /\
clockof e =
cks) ->
oconcat (
map f es) =
Some cks ->
Forall (
wc_exp G env)
es
/\
clocksof es =
cks.
Proof.
induction es as [|
e es IH];
intros cks WTf CE.
now inv CE;
auto.
simpl in CE.
destruct (
f e)
eqn:
Ce; [|
now omonadInv CE].
destruct (
oconcat (
map f es))
as [
ces|]; [|
now omonadInv CE].
omonadInv CE.
simpl.
apply WTf in Ce as (
Ce1 & ->);
auto with datatypes.
destruct (
IH ces)
as (? & ->);
auto.
intros *
Ies Fe.
apply WTf in Fe;
auto with datatypes.
Qed.
Lemma omap_concat_map_check_exp':
forall {
f} (
ess :
list (
enumtag *
_))
ncks,
(
forall es e ncks,
In es ess ->
In e (
snd es) ->
f e =
Some ncks ->
wc_exp G env e /\
clockof e =
ncks) ->
omap (
fun es =>
oconcat (
map f (
snd es)))
ess =
Some ncks ->
Forall (
fun es =>
Forall (
wc_exp G env) (
snd es))
ess
/\
Forall2 (
fun es ncks =>
clocksof (
snd es) =
ncks)
ess ncks.
Proof.
induction ess as [|
es ess IH];
intros ncks WTf CE.
now inv CE;
auto.
simpl in CE.
destruct (
oconcat (
map f (
snd es)))
eqn:
Ce; [|
now omonadInv CE].
eapply oconcat_map_check_exp'
in Ce as (?&?);
eauto with datatypes.
destruct (
omap _ _)
as [
tes|]; [|
now omonadInv CE].
omonadInv CE.
simpl.
specialize (
IH tes)
as (? & ?);
eauto using in_cons.
Qed.
Lemma omap_check_exp':
forall {
f}
es cks,
(
forall e cks,
In e es ->
f e =
Some cks ->
wc_exp G env e /\
clockof e =
cks) ->
omap f es =
Some cks ->
Forall (
wc_exp G env)
es
/\
Forall2 (
fun e ck =>
clockof e =
ck)
es cks.
Proof.
induction es as [|
e es IH];
intros cks WTf CE.
now inv CE;
auto.
simpl in CE.
destruct (
f e)
eqn:
Ce; [|
now omonadInv CE].
destruct (
omap f es)
as [
ces|]; [|
now omonadInv CE].
omonadInv CE.
simpl.
apply WTf in Ce as (
Ce1 &
Ce2);
auto with datatypes.
destruct (
IH ces)
as (? & ?);
auto.
intros *
Ies Fe.
apply WTf in Fe;
auto with datatypes.
Qed.
Lemma find_add_isub:
forall sub x tc ck nm,
~
Env.In x sub ->
Env.find x (
add_isub sub (
x,
tc) (
ck,
nm)) =
nm.
Proof.
Lemma fold_left2_add_osub_skip:
forall x xs anns sub,
~
In x (
map fst xs) ->
Env.find x (
fold_left2 add_osub xs anns sub) =
Env.find x sub.
Proof.
induction xs as [|(
y, (((
yt,
yc),
ycaus),
yl))
xs IH];
simpl;
auto.
-
destruct anns;
auto.
-
simpl;
intros anns sub NIx.
apply Decidable.not_or in NIx as (
Nx &
NIx).
destruct anns as [|(
ty, (
ck,
n))
anns];
auto.
rewrite (
IH _ _ NIx).
unfold add_osub,
add_isub;
simpl.
destruct n;
auto.
rewrite Env.gso;
auto.
Qed.
Lemma fold_left2_add_isub_skip:
forall x xs ncs sub,
~
In x (
map fst xs) ->
Env.find x (
fold_left2 add_isub xs ncs sub) =
Env.find x sub.
Proof.
induction xs as [|(
y, ((
yt,
yc),
ycaus))
xs IH];
simpl;
auto.
-
destruct ncs;
auto.
-
simpl;
intros ncs sub NIx.
apply Decidable.not_or in NIx as (
Nx &
NIx).
destruct ncs as [|(
ck,
n)
anns];
auto.
rewrite (
IH _ _ NIx).
unfold add_isub;
simpl.
destruct n;
auto.
rewrite Env.gso;
auto.
Qed.
Lemma fold_left2_add_isub:
forall x xt xc ck nm xs ncs sub,
In ((
x, (
xt,
xc)), (
ck,
nm)) (
combine xs ncs) ->
NoDupMembers xs ->
~
Env.In x sub ->
Env.find x (
fold_left2 add_isub xs ncs sub) =
nm.
Proof.
Lemma fold_left2_add_osub:
forall x xt xc ty ck nm xs ans sub,
In ((
x, (
xt,
xc)), (
ty, (
ck,
nm))) (
combine xs ans) ->
NoDupMembers xs ->
~
Env.In x sub ->
Env.find x (
fold_left2 add_osub xs ans sub) =
nm.
Proof.
induction xs as [|(
y, (((
yt,
yc),
ycaus),
yl))
xs IH].
now inversion 1.
intros ncs sub Ix ND NI.
destruct ncs as [|(
ck',
nm')
ncs].
now inversion Ix.
simpl in *.
destruct Ix as [
Ix|
Ix].
-
inv Ix.
inv ND.
rewrite fold_left2_add_osub_skip.
now apply find_add_isub.
rewrite in_map_iff.
intros ((
y, ((?, ?), ?)) &
Fy &
Iy).
simpl in *;
subst.
take (~
InMembers _ _)
and apply it.
apply In_InMembers with (1:=
Iy).
-
inv ND.
eapply IH in Ix;
eauto.
apply in_combine_l,
In_InMembers in Ix.
take (~
InMembers _ xs)
and apply InMembers_neq with (2:=
it)
in Ix.
unfold add_osub,
add_isub;
simpl.
destruct nm';
auto.
simpl.
destruct o;
auto.
setoid_rewrite Env.Props.P.F.add_in_iff.
apply not_or';
auto.
Qed.
Lemma check_inst_correct:
forall bck xc ck sub,
check_inst bck sub xc ck =
true ->
instck bck (
fun x =>
Env.find x sub)
xc =
Some ck.
Proof.
induction xc as [|
xc' ?
x b];
simpl.
now setoid_rewrite equiv_decb_equiv;
inversion 2.
destruct ck.
now inversion 1.
intros sub Fx.
cases_eqn Heq.
1,2:
repeat take (
_ &&
_ =
true)
and apply andb_prop in it as (? & ?).
1,2:
repeat take ((
_ ==
b _) =
true)
and rewrite equiv_decb_equiv in it;
inv it.
1,2:
erewrite IHxc in Heq0; [|
eauto];
inv Heq0;
auto.
Qed.
Lemma check_reset_correct:
forall cks,
check_reset cks =
true ->
Forall (
fun cks =>
exists ck,
cks = [
ck])
cks.
Proof.
intros *
Che.
eapply forallb_Forall in Che.
eapply Forall_impl; [|
eauto].
intros ?
Eq.
destruct a as [|? [|??]];
try congruence;
eauto.
Qed.
Local Hint Constructors wc_exp :
lclocking.
Lemma check_exp_correct:
forall e ncks,
check_exp e =
Some ncks ->
wc_exp G env e
/\
clockof e =
ncks.
Proof with
eauto with lclocking.
induction e using exp_ind2;
simpl;
intros ncks CE;
repeat progress
match goal with
|
H:
None =
Some _ |-
_ =>
discriminate
|
H:
Some _ =
Some _ |-
_ =>
inv H
|
a:
ann |-
_ =>
destruct a
|
a:
lann |-
_ =>
destruct a
|
nc:
nclock |-
_ =>
destruct nc
|
p:(
_ *
_) |-
_ =>
destruct p
|
H:
obind _ _ =
Some _ |-
_ =>
omonadInv H
|
H:
_ &&
_ =
true |-
_ =>
apply Bool.andb_true_iff in H as (? & ?)
|
H: ((
_ ==
b _) =
true) |-
_ =>
rewrite equiv_decb_equiv in H;
inv H
|
H:(
if ?
c then Some _ else None) =
Some _ |-
_ =>
let C :=
fresh "
C0"
in
destruct c eqn:
C
|
H:
check_var _ _ =
true |-
_ =>
eapply check_var_correct in H;
eauto
|
H:
check_last _ _ =
true |-
_ =>
eapply check_last_correct in H as (?&?);
eauto
|
H:
assert_singleton _ =
Some _ |-
_ =>
apply assert_singleton_spec in H
|
H:
obind ?
v _ =
Some _ |-
_ =>
let OE:=
fresh "
OE0"
in destruct v eqn:
OE; [
simpl in H|
now omonadInv H]
|
H:(
match ?
o with Some _ =>
_ |
None =>
None end) =
Some _ |-
_ =>
destruct o
|
H:(
match ?
o with Some _ =>
None |
None =>
_ end) =
Some _ |-
_ =>
destruct o
|
H:(
match ?
o with Some _ =>
if _ then _ else _ |
None =>
_ end) =
Some _ |-
_ =>
destruct o
|
H:(
match ?
c with Cbase =>
None |
_ =>
_ end) =
Some _ |-
_ =>
destruct c
|
H:
forall3b check_paired_clocks ?
cks1 ?
cks2 ?
anns =
true |-
_ =>
apply check_paired_clocks_correct in H as (? & ?)
|
H:(?
xs <>
b 0) =
true |-
_ =>
apply nequiv_decb_true in H;
assert (0 <
xs)
by (
destruct l;
[
now exfalso;
apply H|
apply PeanoNat.Nat.lt_0_succ])
|
H:
obind2 (
assert_singleton ?
ce)
_ =
Some _ |-
_ =>
destruct (
assert_singleton ce)
as [(
ck,
n)|]
eqn:
AS;
try discriminate;
simpl in H
end;
eauto...
-
apply IHe in OE0 as (? & ?)...
-
apply IHe1 in OE0 as (? & ?);
apply IHe2 in OE1 as (? & ?)...
-
repeat take (
Forall (
fun e :
exp =>
_)
_)
and rewrite Forall_forall in it.
apply oconcat_map_check_exp'
in OE0 as (? & ?);
auto;
subst.
take (
forallb _ _ =
true)
and apply forallb_Forall in it.
split...
econstructor;
eauto.
simpl_Forall.
now rewrite equiv_decb_equiv in it.
take (
negb _ =
true)
and rewrite Bool.negb_true_iff, <-
Bool.not_true_iff_false in it.
contradict it.
now apply is_nil_spec.
-
repeat take (
Forall (
fun e :
exp =>
_)
_)
and rewrite Forall_forall in it.
apply oconcat_map_check_exp'
in OE0 as (? & ?);
auto.
apply oconcat_map_check_exp'
in OE1 as (? & ?);
auto.
subst.
split...
-
repeat take (
Forall (
fun e :
exp =>
_)
_)
and rewrite Forall_forall in it.
apply oconcat_map_check_exp'
in OE0 as (? & ?);
auto.
apply oconcat_map_check_exp'
in OE1 as (? & ?);
auto.
subst.
split...
-
take (
Forall _ es)
and rewrite Forall_forall in it.
take (
oconcat (
map check_exp _) =
Some _)
and
apply oconcat_map_check_exp'
in it as (? & ?);
auto.
take (
forall2b _ _ _ =
true)
and rename it into FA2;
apply forall2b_Forall2 in FA2.
subst;
simpl;
repeat split;
auto.
constructor;
auto.
2:
pose proof (
Forall2_length _ _ _ FA2)
as Hlen;
auto.
apply Forall2_ignore2 in FA2.
apply Forall_impl_In with (2:=
FA2).
intros ? ? (? &
HH).
now rewrite equiv_decb_equiv in HH;
inv HH.
-
take (
Forall _ es)
and (
repeat setoid_rewrite Forall_forall in it).
take (
omap _ _ =
Some _)
and
apply omap_concat_map_check_exp'
in it as (
Hwc &
Heq);
eauto.
take (
check_merge_clocks _ _ _ _ _ _ =
true)
and
apply check_merge_clocks_correct in it as (
Hf1 &
Hf2).
eapply Forall2_combine''
in Hf1.
eapply Forall2_combine''
in Hf2.
2,3:(
rewrite map_length;
eapply Forall2_length in Heq;
eauto).
split;
eauto.
econstructor;
eauto.
+
contradict H1;
subst;
simpl.
auto.
+
rewrite Forall2_map_1 in Hf1.
eapply Forall2_Forall2 in Hf1; [|
eapply Heq].
eapply Forall2_ignore2 in Hf1.
eapply Forall_impl; [|
eauto].
intros (?&?) (?&
_&
Hck&?);
simpl in *;
subst.
assumption.
+
rewrite Forall2_map_1 in Hf2.
eapply Forall2_Forall2 in Hf2; [|
eapply Heq].
eapply Forall2_ignore2 in Hf2.
eapply Forall_impl; [|
eauto].
intros (?&?) (?&
_&
Hlen&?);
simpl in *.
rewrite Hlen;
auto.
-
take (
Forall _ _)
and (
repeat setoid_rewrite Forall_forall in it).
take (
omap _ _ =
Some _)
and
apply omap_concat_map_check_exp'
in it as (
Hwces &
Hckes);
eauto.
take (
check_case_clocks _ _ _ =
true)
and
apply check_case_clocks_correct in it as (
Hf1 &
Hf2).
apply Forall_app in Hf1 as (
Hd1&
Hes1).
apply Forall_app in Hf2 as (
Hd2&
Hes2).
eapply IHe in OE2 as (? &
Hcke);
auto.
split;
eauto.
econstructor;
eauto.
+
contradict H2;
subst;
simpl.
auto.
+
eapply Forall2_ignore2 in Hckes.
eapply Forall_impl; [|
eapply Hckes];
intros (?&?) (?&?&
Hck);
subst.
eapply Forall_forall in Hes1;
eauto.
+
eapply Forall2_ignore2 in Hckes.
eapply Forall_impl; [|
eapply Hckes];
intros (?&?) (?&?&
Hck).
rewrite Hck.
eapply Forall_forall in Hes2;
eauto.
+
intros;
subst;
simpl in *.
destruct (
oconcat (
map _ _))
eqn:
OE1;
simpl in *;
omonadInv OE0.
take (
oconcat (
map check_exp _) =
Some _)
and
apply oconcat_map_check_exp'
in it as (? & ?);
eauto.
intros;
eapply Forall_forall in H0;
eauto.
+
intros;
subst;
simpl in *.
destruct (
oconcat (
map _ _))
eqn:
OE1;
simpl in *;
omonadInv OE0.
take (
oconcat (
map check_exp _) =
Some _)
and
apply oconcat_map_check_exp'
in it as (? & ?);
eauto.
2:
intros;
eapply Forall_forall in H0;
eauto.
rewrite H3.
apply Forall_singl in Hd1;
auto.
+
intros;
subst;
simpl in *.
destruct (
oconcat (
map _ _))
eqn:
OE1;
simpl in *;
omonadInv OE0.
take (
oconcat (
map check_exp _) =
Some _)
and
apply oconcat_map_check_exp'
in it as (? & ?);
eauto.
2:
intros;
eapply Forall_forall in H0;
eauto.
rewrite H3.
now apply Forall_singl in Hd2.
-
repeat take (
Forall _ _)
and rewrite Forall_forall in it.
take (
oconcat (
map check_exp _) =
Some _)
and
apply oconcat_map_check_exp'
in it as (? & ?);
auto.
subst.
repeat take (
forall2b _ _ _ =
true)
and apply forall2b_Forall2 in it.
split;
auto.
match goal with H:
find_base_clock _ _ =
Some ?
c |-
_ =>
rename c into bck end.
assert (
Forall2 (
WellInstantiated bck
(
fun x =>
Env.find x (
fold_left2 add_osub n.(
n_out) (
map (
fun '(
ty,
ck0) => (
ty, (
ck0,
None)))
a)
(
fold_left2 add_isub n.(
n_in) (
nclocksof es) (
Env.empty _)))))
(
map (
fun '(
x, (
_,
ck,
_)) => (
x,
ck))
n.(
n_in)) (
nclocksof es)).
{
apply Forall2_map_1,
Forall2_forall.
take (
Forall2 _ n.(
n_in) (
nclocksof es))
and rename it into FA2.
split; [|
now apply Forall2_length with (1:=
FA2)].
intros (
x, ((
xt,
xc),
xcaus)) (
ck,
nm)
Ix.
constructor;
simpl;
[|
now apply Forall2_In with (1:=
Ix),
check_inst_correct in FA2].
pose proof n.(
n_nodup)
as (
ND&
_).
rewrite fold_left2_add_osub_skip,
fold_left2_add_isub with (1:=
Ix);
eauto.
-
now apply NoDup_app_l,
fst_NoDupMembers in ND.
-
now rewrite Env.Props.P.F.empty_in_iff.
-
apply in_combine_l,
In_InMembers in Ix.
eapply NoDup_app_In;
eauto.
now apply fst_InMembers. }
assert (
Forall2 (
WellInstantiated bck
(
fun x =>
Env.find x (
fold_left2 add_osub n.(
n_out) (
map (
fun '(
ty,
ck0) => (
ty, (
ck0,
None)))
a)
(
fold_left2 add_isub n.(
n_in) (
nclocksof es) (
Env.empty ident)))))
(
map (
fun '(
x, (
_,
ck,
_,
_)) => (
x,
ck))
n.(
n_out)) (
map (
fun '(
ty,
ck0) => (
ck0,
None))
a)).
{
apply Forall2_map_1,
Forall2_forall.
take (
Forall2 _ n.(
n_out)
_)
and rename it into FA2.
split. 2:{
eapply Forall2_length in FA2.
rewrite map_length in *;
auto. }
intros (
x, (((
xt,
xc),
xcaus),
xl)) (
ck,
nm)
Ix.
rewrite combine_map_snd,
in_map_iff in Ix.
destruct Ix as (((
y & ((
yt &
yc) &
ycaus)), (
yc' &
ynm)) &
EE &
Ix);
inv EE.
constructor;
simpl.
2:{
rewrite Forall2_map_2 in FA2.
eapply Forall2_In in Ix; [|
eauto];
simpl in *.
apply check_inst_correct;
auto. }
pose proof n.(
n_nodup)
as (
ND&
_).
erewrite fold_left2_add_osub ;
eauto.
2:
now apply NoDup_app_r,
fst_NoDupMembers in ND.
{
rewrite combine_map_snd.
eapply in_map_iff;
do 2
esplit;
eauto;
simpl;
auto. }
setoid_rewrite Env.Props.P.F.not_find_in_iff.
rewrite fold_left2_add_isub_skip;
auto using Env.gempty.
apply in_combine_l,
In_InMembers in Ix.
intros ?.
eapply NoDup_app_In;
eauto.
now apply fst_InMembers. }
eapply omap_check_exp'
in OE2 as (? & ?);
eauto.
econstructor;
eauto.
+
eapply check_reset_correct in H2.
eapply Forall2_ignore1'
in H2. 2:
symmetry;
eapply Forall2_length;
eauto.
eapply Forall2_Forall2,
Forall2_ignore2 in H4;
eauto.
eapply Forall_impl; [|
eauto].
intros ? (?&?&?&?);
subst.
auto.
Qed.
Corollary omap_check_exp:
forall es ncks,
omap check_exp es =
Some ncks ->
Forall (
wc_exp G env)
es
/\
Forall2 (
fun e ck =>
clockof e =
ck)
es ncks.
Proof.
Corollary oconcat_map_check_exp:
forall es ncks,
oconcat (
map check_exp es) =
Some ncks ->
Forall (
wc_exp G env)
es
/\
clocksof es =
ncks.
Proof.
intros.
eapply oconcat_map_check_exp';
eauto.
intros;
eauto using check_exp_correct.
Qed.
Lemma check_equation_correct:
forall eq,
check_equation eq =
true ->
wc_equation G env eq.
Proof.
intros eq CE.
destruct eq as (
xs,
es);
simpl in CE.
cases_eqn CE.
all:
take (
forall2b _ _ _ =
true)
and apply check_vars_correct in it.
all:
try (
take (
oconcat (
map _ _) =
Some _)
and apply oconcat_map_check_exp in it as (
WC &
NC);
econstructor;
eauto;
rewrite NC;
auto).
repeat progress
match goal with
|
H:
None =
Some _ |-
_ =>
discriminate
|
H:
Some _ =
Some _ |-
_ =>
inv H
|
a:
ann |-
_ =>
destruct a
|
a:
lann |-
_ =>
destruct a
|
nc:
nclock |-
_ =>
destruct nc
|
p:(
_ *
_) |-
_ =>
destruct p
|
H:
obind _ _ =
Some _ |-
_ =>
omonadInv H
|
H:
_ &&
_ =
true |-
_ =>
apply Bool.andb_true_iff in H as (? & ?)
|
H: ((
_ ==
b _) =
true) |-
_ =>
rewrite equiv_decb_equiv in H;
inv H
|
H:(
if ?
c then Some _ else None) =
Some _ |-
_ =>
let C :=
fresh "
C0"
in
destruct c eqn:
C
|
H:
check_var _ _ =
true |-
_ =>
eapply check_var_correct in H;
eauto
|
H:
assert_singleton _ =
Some _ |-
_ =>
apply assert_singleton_spec in H
|
H:
obind ?
v _ =
Some _ |-
_ =>
let OE:=
fresh "
OE0"
in destruct v eqn:
OE; [
simpl in H|
now omonadInv H]
|
H:
forall3b check_paired_clocks ?
cks1 ?
cks2 ?
anns =
true |-
_ =>
apply check_paired_clocks_correct in H as (? & ?)
|
H:(?
xs <>
b 0) =
true |-
_ =>
apply nequiv_decb_true in H;
assert (0 <
xs)
by (
destruct l;
[
now exfalso;
apply H|
apply PeanoNat.Nat.lt_0_succ])
|
H:
obind2 (
assert_singleton ?
ce)
_ =
Some _ |-
_ =>
destruct (
assert_singleton ce)
as [(
ck,
n)|]
eqn:
AS;
try discriminate;
simpl in H
end.
repeat take (
Forall _ _)
and rewrite Forall_forall in it.
take (
oconcat (
map check_exp _) =
Some _)
and
apply oconcat_map_check_exp in it as (? & ?);
auto.
subst.
take (
omap check_exp _ =
Some _)
and
apply omap_check_exp in it as (?&?);
auto.
subst.
repeat take (
forall2b _ _ _ =
true)
and apply forall2b_Forall2 in it.
match goal with H:
find_base_clock _ _ =
Some ?
c |-
_ =>
rename c into bck end.
assert (
Forall2 (
WellInstantiated bck
(
fun x =>
Env.find x (
fold_left2 add_osub n.(
n_out) (
map (
fun '(
ty,
ck0,
x0) => (
ty, (
ck0,
Some x0))) (
combine l2 xs))
(
fold_left2 add_isub n.(
n_in) (
nclocksof l0) (
Env.empty _)))))
(
map (
fun '(
x, (
_,
ck,
_)) => (
x,
ck))
n.(
n_in)) (
nclocksof l0)).
{
apply Forall2_map_1,
Forall2_forall.
take (
Forall2 _ n.(
n_in) (
nclocksof l0))
and rename it into FA2.
split; [|
now apply Forall2_length with (1:=
FA2)].
intros (
x, ((
xt,
xc),
xcaus)) (
ck,
nm)
Ix.
constructor;
simpl;
[|
now apply Forall2_In with (1:=
Ix),
check_inst_correct in FA2].
pose proof n.(
n_nodup)
as (
ND&
_).
rewrite fold_left2_add_osub_skip,
fold_left2_add_isub with (1:=
Ix);
auto.
-
eapply fst_NoDupMembers,
NoDup_app_l;
eauto.
-
now rewrite Env.Props.P.F.empty_in_iff.
-
apply in_combine_l,
In_InMembers in Ix.
eapply NoDup_app_In;
eauto.
now apply fst_InMembers. }
assert (
Forall3 (
fun xck ck2 x2 =>
WellInstantiated bck
(
fun x =>
Env.find x (
fold_left2 add_osub n.(
n_out) (
map (
fun '(
ty,
ck0,
x0) => (
ty, (
ck0,
Some x0))) (
combine l2 xs))
(
fold_left2 add_isub n.(
n_in) (
nclocksof l0) (
Env.empty ident))))
xck (
ck2,
Some x2))
(
map (
fun '(
x, (
_,
ck,
_,
_)) => (
x,
ck))
n.(
n_out)) (
map snd l2)
xs).
{
apply Forall3_combine2,
Forall2_map_1,
Forall2_forall;
simpl.
rewrite map_length;
auto.
take (
Forall2 _ n.(
n_out)
_)
and rename it into FA2.
split. 2:{
eapply Forall2_length in FA2.
rewrite combine_length,
map_length,
H4,
Nat.min_id;
auto. }
intros (
x, ((
xt,
xc),
xcaus)) (
ck,
nm)
Ix.
rewrite combine_map_fst,
combine_map_snd,
in_map_iff in Ix.
destruct Ix as (((
y & (((
yt &
yc) &
ycaus) &
yl)), ((? &
yc') &
ynm)) &
EE &
Ix);
inv EE.
constructor;
simpl.
2:{
eapply Forall2_In in FA2; [|
eauto];
simpl in *.
2:{
eapply In_combine_nth_error in Ix as (?&?&
Hnth2).
apply combine_nth_error in Hnth2 as (
Hnth2&
Hnth3).
eapply In_combine_nth_error;
eauto. }
simpl in *.
eapply check_inst_correct;
eauto. }
pose proof n.(
n_nodup)
as (
ND&
_).
erewrite fold_left2_add_osub ;
eauto.
2:
eapply fst_NoDupMembers,
NoDup_app_r;
eauto.
{
rewrite combine_map_snd.
eapply in_map_iff;
do 2
esplit;
eauto;
simpl;
auto. }
setoid_rewrite Env.Props.P.F.not_find_in_iff.
rewrite fold_left2_add_isub_skip;
auto using Env.gempty.
apply in_combine_l,
In_InMembers in Ix.
intros ?.
eapply NoDup_app_In;
eauto.
now apply fst_InMembers. }
econstructor;
eauto.
+
eapply check_reset_correct in H0.
eapply Forall2_ignore1'
in H0. 2:
symmetry;
eapply Forall2_length;
eauto.
eapply Forall2_Forall2,
Forall2_ignore2 in H5;
eauto.
simpl_Forall.
subst.
eauto.
Qed.
Fixpoint check_clock (
ck :
clock) :
bool :=
match ck with
|
Cbase =>
true
|
Con ck'
x b =>
check_var x ck' &&
check_clock ck'
end.
Lemma check_clock_correct :
forall ck,
check_clock ck =
true ->
wc_clock (
idck env)
ck.
Proof.
induction ck;
intros Hcheck;
simpl;
auto with clocks.
apply Bool.andb_true_iff in Hcheck as [
Hc1 Hc2].
constructor;
auto.
eapply check_var_correct in Hc1;
auto.
inv Hc1.
solve_In.
Qed.
End ValidateExpression.
Section ValidateBlock.
Context {
PSyn :
list decl ->
block ->
Prop}.
Context {
prefs :
PS.t}.
Variable (
G : @
global PSyn prefs).
Definition check_base_exp venv venvl e :=
match check_exp G venv venvl e with
|
Some [
Cbase] =>
true
|
_ =>
false
end.
Lemma check_base_exp_correct venv venvl env :
forall e,
(
forall x ty,
Env.find x venv =
Some ty ->
HasClock env x ty) ->
(
forall x ty,
Env.find x venvl =
Some ty ->
HasClock env x ty /\
IsLast env x) ->
check_base_exp venv venvl e =
true ->
wc_exp G env e /\
clockof e = [
Cbase].
Proof.
Definition check_last_decl venv venvl (
d :
decl) :=
let '(
_, (
_,
ck,
_,
o)) :=
d in
match o with
|
None =>
true
|
Some (
e,
_) =>
match check_exp G venv venvl e with
|
Some [
ck'] =>
ck' ==
b ck
|
_ =>
false
end
end.
Definition check_scope {
A} (
f_check :
Env.t clock ->
Env.t clock ->
A ->
bool)
(
venv venvl :
Env.t clock) (
s :
scope A) :
bool :=
let '
Scope locs blks :=
s in
let venv' :=
Env.adds' (
map (
fun '(
x, (
_,
ck,
_,
_)) => (
x,
ck))
locs)
venv in
let venvl' :=
Env.adds' (
map_filter (
fun '(
x, (
_,
ck,
_,
o)) =>
option_map (
fun _ => (
x,
ck))
o)
locs)
venvl in
forallb (
check_clock venv') (
map (
fun '(
_, (
_,
ck,
_,
_)) =>
ck)
locs)
&&
forallb (
check_last_decl venv'
venvl')
locs
&&
f_check venv'
venvl'
blks.
Fixpoint check_block (
venv venvl :
Env.t clock) (
blk :
block) :
bool :=
match blk with
|
Beq eq =>
check_equation G venv venvl eq
|
Breset blocks er =>
forallb (
check_block venv venvl)
blocks &&
match check_exp G venv venvl er with
|
Some [
ck] =>
true
|
_ =>
false
end
|
Bswitch ec branches =>
negb (
is_nil branches) &&
match check_exp G venv venvl ec with
|
Some [
ck] =>
let venv' :=
Env.map (
fun _ =>
Cbase) (
Env.Props.P.filter (
fun x ck' => (
ck' ==
b ck))
venv)
in
let venvl' :=
Env.map (
fun _ =>
Cbase) (
Env.Props.P.filter (
fun x ck' => (
ck' ==
b ck))
venvl)
in
forallb (
fun '(
_,
Branch _ blks) =>
forallb (
check_block venv'
venvl')
blks)
branches
|
_ =>
false
end
|
Bauto type ck (
ini,
oth)
states =>
let venv' :=
Env.map (
fun _ =>
Cbase) (
Env.Props.P.filter (
fun x ck' => (
ck' ==
b ck))
venv)
in
let venvl' :=
Env.map (
fun _ =>
Cbase) (
Env.Props.P.filter (
fun x ck' => (
ck' ==
b ck))
venvl)
in
check_clock venv ck
&&
forallb (
fun '(
e,
_) =>
check_base_exp venv'
venvl'
e)
ini
&&
negb (
is_nil states)
&&
forallb (
fun '(
_,
Branch _ (
unl,
blks)) =>
forallb (
fun '(
e,
_) =>
check_base_exp venv'
venvl'
e)
unl
&&
check_scope (
fun venv'
venvl' '(
blks,
trans) =>
forallb (
check_block venv'
venvl')
blks
&&
forallb (
fun '(
e,
_) =>
check_base_exp venv'
venvl'
e)
trans)
venv'
venvl'
blks)
states
|
Blocal s =>
check_scope (
fun venv'
venvl' =>
forallb (
check_block venv'
venvl'))
venv venvl s
end.
Lemma check_scope_correct {
A}
f_check (
P_nd :
_ ->
_ ->
Prop) (
P_wc :
_ ->
_ ->
Prop) :
forall venv venvl env locs (
blks:
A),
(
forall x ty,
Env.find x venv =
Some ty ->
HasClock env x ty) ->
(
forall x ty,
Env.find x venvl =
Some ty ->
HasClock env x ty /\
IsLast env x) ->
(
forall venv venvl env,
NoDupMembers env ->
P_nd (
map fst env)
blks ->
(
forall x ty,
Env.find x venv =
Some ty ->
HasClock env x ty) ->
(
forall x ty,
Env.find x venvl =
Some ty ->
HasClock env x ty /\
IsLast env x) ->
f_check venv venvl blks =
true ->
P_wc env blks) ->
NoDupMembers env ->
NoDupScope P_nd (
map fst env) (
Scope locs blks) ->
check_scope f_check venv venvl (
Scope locs blks) =
true ->
wc_scope P_wc G env (
Scope locs blks).
Proof.
intros *
Henv Henvl Hp Hnd1 Hnd2 Hc.
assert (
forall x ty,
Env.find x (
Env.adds' (
map (
fun '(
x, (
_,
ck,
_,
_)) => (
x,
ck))
locs)
venv) =
Some ty ->
HasClock (
env ++
senv_of_decls locs)
x ty)
as Henv'.
{
intros *
Hfind.
apply Env.find_adds'
_In in Hfind as [
Hfind|
Hfind].
-
simpl_In.
right.
econstructor.
solve_In.
reflexivity.
-
apply Henv in Hfind.
inv Hfind.
eauto with senv datatypes.
}
assert (
forall x ty,
Env.find x (
Env.adds' (
map_filter (
fun '(
x, (
_,
ck,
_,
o)) =>
option_map (
fun _ => (
x,
ck))
o)
locs)
venvl) =
Some ty ->
HasClock (
env ++
senv_of_decls locs)
x ty /\
IsLast (
env ++
senv_of_decls locs)
x)
as Henvl'.
{
intros *
Hfind.
apply Env.find_adds'
_In in Hfind as [
Hfind|
Hfind].
-
simpl_In.
split;
right;
econstructor. 1,3:
solve_In.
reflexivity.
simpl.
congruence.
-
apply Henvl in Hfind as (
Hhas&
His).
inv Hhas.
inv His.
constructor;
eauto with senv datatypes.
}
simpl in *.
repeat rewrite Bool.andb_true_iff in Hc.
destruct Hc as ((
CC&
CL)&
CB).
apply forallb_Forall in CC.
apply forallb_Forall in CL.
econstructor;
eauto.
-
simpl_Forall.
eapply check_clock_correct in CC;
eauto.
-
simpl_Forall.
destruct o as [(?&?)|];
simpl in *;
auto.
cases_eqn EQ;
subst.
rewrite equiv_decb_equiv in CL;
inv CL.
eapply check_exp_correct in EQ as (
Hwt&
Hty);
eauto.
-
inv Hnd2.
eapply Hp;
eauto using NoDupScope_NoDupMembers.
+
now rewrite map_app,
map_fst_senv_of_decls.
Qed.
Lemma check_block_correct:
forall blk venv venvl env,
(
forall x ty,
Env.find x venv =
Some ty ->
HasClock env x ty) ->
(
forall x ty,
Env.find x venvl =
Some ty ->
HasClock env x ty /\
IsLast env x) ->
NoDupMembers env ->
NoDupLocals (
map fst env)
blk ->
check_block venv venvl blk =
true ->
wc_block G env blk.
Proof.
Opaque check_scope.
induction blk using block_ind2;
intros *
Henv Henvl Hnd1 Hnd2 CE;
simpl in *;
inv Hnd2.
-
econstructor.
eapply check_equation_correct;
eauto.
-
apply Bool.andb_true_iff in CE as (
CDs&
CE).
cases_eqn CEr;
subst.
eapply check_exp_correct in CEr as (?&
Hnck);
eauto.
econstructor;
auto.
+
eapply forallb_Forall in CDs.
rewrite Forall_forall in *;
intros;
eauto.
+
eauto.
-
apply Bool.andb_true_iff in CE as (
CNnil&
CE).
cases_eqn CE;
subst.
eapply check_exp_correct in CE0 as (?&
Hck);
eauto.
remember (
Env.Props.P.filter _ _)
as venv'.
eapply wc_Bswitch with (Γ':=
map_filter (
fun '(
x,
e) =>
if e.(
clo) ==
b c
then Some (
x,
ann_with_clock e Cbase)
else None)
env).
all:
eauto.
+
contradict CNnil;
subst;
simpl in *.
auto.
+
intros *
Hhas.
inv Hhas.
simpl_In.
cases_eqn Heq;
inv Hf.
rewrite equiv_decb_equiv in Heq;
inv Heq.
simpl in *.
split.
econstructor;
eauto.
reflexivity.
+
intros *
Hil.
inv Hil.
simpl_In.
cases;
inv Hf.
simpl in *.
econstructor;
eauto.
+
eapply forallb_Forall in CE.
simpl_Forall.
take (
NoDupBranch _ _)
and inv it.
constructor.
eapply forallb_Forall in CE.
simpl_Forall.
eapply H;
eauto.
1,2:(
subst;
intros *
Hfind;
rewrite Env.Props.P.F.map_o in Hfind;
inv_equalities;
subst;
apply Env.Props.P.filter_iff in Hf as (
Hfind&
Heq); [|
intros ??????;
subst;
reflexivity];
rewrite equiv_decb_equiv in Heq;
inv Heq).
*
apply Henv in Hfind.
inv Hfind.
econstructor.
solve_In;
simpl.
rewrite equiv_decb_refl. 1,2:
reflexivity.
*
apply Henvl in Hfind as (
Hhas&
His).
inv Hhas.
inv His.
eapply NoDupMembers_det in H5;
eauto;
subst.
split;
econstructor;
solve_In;
simpl;
try rewrite equiv_decb_refl. 1-3:
reflexivity.
simpl;
assumption.
*
apply NoDupMembers_map_filter;
auto.
intros;
destruct_conjs;
auto.
cases;
simpl;
auto.
*
eapply NoDupLocals_incl;
eauto.
intros ??.
solve_In.
destruct (
_ ==
b _);
inv Hf;
auto.
-
destruct_conjs.
repeat rewrite Bool.andb_true_iff in CE.
repeat rewrite forallb_Forall in CE.
destruct CE as (((
CC&
CE)&
CNnil)&
CB).
assert (
forall (
x :
Env.key) (
ty :
clock),
Env.find x (
Env.map (
fun _ :
clock =>
Cbase) (
Env.Props.P.filter (
fun (
_ :
FMapPositive.PositiveMap.key) (
ck' :
clock) =>
ck' ==
b ck)
venv)) =
Some ty ->
HasClock (
map_filter (
fun '(
x0,
e2) =>
if clo e2 ==
b ck then Some (
x0,
ann_with_clock e2 Cbase)
else None)
env)
x ty)
as Henv'.
{
subst;
intros *
Hfind;
rewrite Env.Props.P.F.map_o in Hfind;
inv_equalities;
subst.
apply Env.Props.P.filter_iff in Hf as (
Hfind&
Heq); [|
intros ??????;
subst;
reflexivity].
rewrite equiv_decb_equiv in Heq;
inv Heq.
apply Henv in Hfind.
inv Hfind.
econstructor.
solve_In;
simpl.
rewrite equiv_decb_refl. 1,2:
reflexivity.
}
assert (
forall (
x :
Env.key) (
ty :
clock),
Env.find x (
Env.map (
fun _ :
clock =>
Cbase) (
Env.Props.P.filter (
fun (
_ :
FMapPositive.PositiveMap.key) (
ck' :
clock) =>
ck' ==
b ck)
venvl)) =
Some ty ->
HasClock (
map_filter (
fun '(
x0,
e2) =>
if clo e2 ==
b ck then Some (
x0,
ann_with_clock e2 Cbase)
else None)
env)
x ty /\
IsLast (
map_filter (
fun '(
x0,
e2) =>
if clo e2 ==
b ck then Some (
x0,
ann_with_clock e2 Cbase)
else None)
env)
x
)
as Henvl'.
{
subst;
intros *
Hfind;
rewrite Env.Props.P.F.map_o in Hfind;
inv_equalities;
subst.
apply Env.Props.P.filter_iff in Hf as (
Hfind&
Heq); [|
intros ??????;
subst;
reflexivity].
rewrite equiv_decb_equiv in Heq;
inv Heq.
apply Henvl in Hfind as (
Hhas&
His).
inv Hhas.
inv His.
eapply NoDupMembers_det in H0;
eauto;
subst.
split;
econstructor;
solve_In;
simpl;
try rewrite equiv_decb_refl. 1-3:
reflexivity.
simpl;
assumption.
}
eapply wc_Bauto with (Γ':=
map_filter (
fun '(
x,
e) =>
if e.(
clo) ==
b ck
then Some (
x,
ann_with_clock e Cbase)
else None)
env).
+
eapply check_clock_correct;
eauto.
+
contradict CNnil;
subst;
simpl in *.
auto.
+
intros *
Hhas.
inv Hhas.
simpl_In.
cases_eqn Heq;
inv Hf.
rewrite equiv_decb_equiv in Heq;
inv Heq.
simpl in *.
split.
econstructor;
eauto.
reflexivity.
+
intros *
Hil.
inv Hil.
simpl_In.
cases;
inv Hf.
simpl in *.
econstructor;
eauto.
+
simpl_Forall.
eapply check_base_exp_correct in CE;
eauto.
+
simpl_Forall.
take (
NoDupBranch _ _)
and inv it.
destruct_conjs;
destruct s;
destruct_conjs.
constructor.
apply Bool.andb_true_iff in CB as (
CL&
CS).
split.
*
apply forallb_Forall in CL.
simpl_Forall;
eauto using check_base_exp_correct.
*
eapply check_scope_correct;
eauto.
2:{
apply NoDupMembers_map_filter;
auto.
intros;
destruct_conjs;
auto.
cases;
simpl;
auto. }
2:{
eapply NoDupScope_incl;
eauto.
-
intros *
Hincl ?;
simpl in *;
simpl_Forall;
eauto using NoDupLocals_incl.
-
intros ??.
solve_In.
destruct (
_ ==
b _);
inv Hf;
auto. }
intros * ????
Hc;
simpl in *.
rewrite Bool.andb_true_iff, 2
forallb_Forall in Hc.
destruct Hc as (?&
CT).
split;
simpl_Forall;
eauto using check_base_exp_correct.
-
constructor.
eapply check_scope_correct;
eauto.
intros * ????
Hc;
simpl in *.
apply forallb_Forall in Hc;
simpl_Forall;
eauto.
Qed.
End ValidateBlock.
Section ValidateGlobal.
Definition check_env (
env :
list (
ident *
clock)) :
bool :=
forallb (
check_clock (
Env.from_list env)) (
List.map snd env).
Definition check_node {
PSyn prefs} (
G : @
global PSyn prefs) (
n : @
node PSyn prefs) :=
let ins :=
map (
fun '(
x, (
_,
ck,
_)) => (
x,
ck)) (
n_in n)
in
let outs :=
map (
fun '(
x, (
_,
ck,
_,
_)) => (
x,
ck)) (
n_out n)
in
let insouts :=
ins++
outs in
let venv :=
Env.from_list insouts in
let venvl :=
Env.from_list (
map_filter (
fun '(
x, (
_,
ck,
_,
o)) =>
option_map (
fun _ => (
x,
ck))
o) (
n_out n))
in
check_env ins
&&
check_env insouts
&&
forallb (
check_last_decl G venv venvl) (
n_out n)
&&
check_block G venv venvl (
n_block n).
Definition check_global {
PSyn prefs} (
G : @
global PSyn prefs) :=
check_nodup (
List.map n_name G.(
nodes)) &&
(
fix aux nds :=
match nds with
| [] =>
true
|
hd::
tl =>
check_node (
update G tl)
hd &&
aux tl
end)
G.(
nodes).
Lemma check_env_correct :
forall env,
check_env env =
true ->
wc_env env.
Proof.
Lemma check_node_correct {
PSyn prefs} :
forall (
G : @
global PSyn prefs)
n,
check_node G n =
true ->
wc_node G n.
Proof.
intros *
Hcheck.
unfold check_node in Hcheck.
repeat rewrite Bool.andb_true_iff in Hcheck.
destruct Hcheck as (((
Hc1&
Hc2)&
Hc3)&
Hc4).
assert (
forall x ck,
Env.find x
(
Env.from_list
(
map (
fun '(
x0, (
_,
ck,
_)) => (
x0,
ck)) (
n_in n) ++
map (
fun '(
x0, (
_,
ck,
_,
_)) => (
x0,
ck)) (
n_out n))) =
Some ck ->
HasClock (
senv_of_ins (
n_in n) ++
senv_of_decls (
n_out n))
x ck)
as Henv.
{
intros *
Find.
clear -
Find.
apply Env.from_list_find_In,
in_app_iff in Find as [
In|
In];
simpl_In;
[
left|
right];
econstructor;
solve_In;
auto. }
assert (
forall x ck,
Env.find x
(
Env.from_list
(
map_filter (
fun '(
x0, (
_,
ck,
_,
o)) =>
option_map (
fun _ => (
x0,
ck))
o) (
n_out n))) =
Some ck ->
HasClock (
senv_of_ins (
n_in n) ++
senv_of_decls (
n_out n))
x ck
/\
IsLast (
senv_of_ins (
n_in n) ++
senv_of_decls (
n_out n))
x)
as Henvl.
{
intros *
Find.
clear -
Find.
apply Env.from_list_find_In in Find;
simpl_In;
split;
right;
econstructor;
solve_In;
eauto.
simpl;
congruence.
}
repeat constructor.
1-2:
apply check_env_correct;
auto.
-
apply forallb_Forall in Hc3.
simpl_Forall.
cases_eqn EQ;
subst;
simpl;
auto.
rewrite equiv_decb_equiv in Hc3;
inv Hc3.
eapply check_exp_correct;
eauto.
-
eapply check_block_correct;
eauto using node_NoDupMembers,
node_NoDupLocals.
Qed.
Lemma check_global_correct {
PSyn prefs} :
forall (
G : @
global PSyn prefs),
check_global G =
true ->
wc_global G.
Proof.
End ValidateGlobal.
Some additional properties related to remove_member
Definition remove_member {
B} := @
remove_member _ B Common.EqDec_instance_0.
Lemma wc_clock_nfreein_remove :
forall vars id ck,
~
Is_free_in_clock id ck ->
wc_clock vars ck ->
wc_clock (
remove_member id vars)
ck.
Proof.
intros vars id ck Hnfree Hwc.
induction Hwc;
constructor.
-
apply IHHwc.
intro Hfree'.
apply Hnfree;
constructor;
auto.
-
clear IHHwc Hwc.
eapply remove_member_neq_In;
eauto.
intro contra;
subst.
apply Hnfree.
constructor.
Qed.
Lemma wc_env_nfreein_remove :
forall id vars,
NoDupMembers vars ->
wc_env vars ->
Forall (
fun '(
_,
ck) => ~
Is_free_in_clock id ck)
vars ->
wc_env (
remove_member id vars).
Proof.
Lemma wc_clock_nfreein_remove' :
forall vars id ck ck',
~
Is_free_in_clock id ck' ->
wc_clock ((
id,
ck)::
vars)
ck' ->
wc_clock vars ck'.
Proof.
intros vars id ck ck' Hnfree Hwc.
induction Hwc; constructor.
- apply IHHwc.
intro Hfree'. apply Hnfree; constructor; auto.
- clear IHHwc Hwc.
inv H; auto.
exfalso. inv H0.
apply Hnfree. constructor.
Qed.
Fact clock_parent_In :
forall vars ck ck'
id b,
wc_clock vars ck ->
clock_parent (
Con ck'
id b)
ck ->
In (
id,
ck')
vars.
Proof.
induction ck; intros * Hwc Hparent; inv Hwc; inv Hparent; eauto.
inv H1; eauto.
Qed.
The clock of a var cant depend on its var
Lemma wc_nfree_in_clock :
forall vars ck id,
NoDupMembers vars ->
In (
id,
ck)
vars ->
wc_clock vars ck ->
~
Is_free_in_clock id ck.
Proof.
A clock dependency order
Inductive dep_ordered_clocks :
list (
ident *
clock) ->
Prop :=
|
dep_ord_clock_nil :
dep_ordered_clocks nil
|
dep_ord_clock_cons :
forall ck id ncks,
dep_ordered_clocks ncks ->
~
Exists (
Is_free_in_clock id) (
map snd ncks) ->
dep_ordered_clocks ((
id,
ck)::
ncks).
Program Fixpoint wc_env_dep_ordered (
vars :
list (
ident *
clock)) {
measure (
length vars)} :
NoDupMembers vars ->
wc_env vars ->
exists vars',
Permutation vars vars' /\
dep_ordered_clocks vars' :=
_.
Next Obligation.
Fact wc_clock_dep_ordered_remove :
forall id ck x xs,
NoDupMembers (
x::
xs) ->
In (
id,
ck)
xs ->
dep_ordered_clocks (
x::
xs) ->
wc_clock (
x::
xs)
ck ->
wc_clock xs ck.
Proof.
Corollary wc_env_dep_ordered_remove :
forall x xs,
NoDupMembers (
x::
xs) ->
dep_ordered_clocks (
x::
xs) ->
wc_env (
x::
xs) ->
wc_env xs.
Proof with
Another equivalent clock dependency order
Definition only_depends_on (
vars :
list ident) (
ck :
clock) :=
forall id,
Is_free_in_clock id ck ->
In id vars.
Lemma only_depends_on_Con :
forall vars ck id b,
only_depends_on vars (
Con ck id b) ->
only_depends_on vars ck.
Proof.
intros vars ck id b Hon id' Hisfree.
apply Hon. constructor; auto.
Qed.
Lemma only_depends_on_incl :
forall vars vars'
ck,
incl vars vars' ->
only_depends_on vars ck ->
only_depends_on vars'
ck.
Proof.
intros vars vars' ck Hincl Honly id Hfree. eauto.
Qed.
Lemma wc_clock_only_depends_on :
forall vars ck,
wc_clock vars ck ->
only_depends_on (
map fst vars)
ck.
Proof.
intros vars ck Hwc id Hisfree;
induction Hwc;
inv Hisfree;
eauto.
rewrite in_map_iff.
exists (
x,
ck);
auto.
Qed.
Inductive dep_ordered_on :
list (
ident *
clock) ->
Prop :=
|
dep_ordered_nil :
dep_ordered_on []
|
dep_ordered_cons :
forall nck ncks,
dep_ordered_on ncks ->
only_depends_on (
map fst ncks) (
snd nck) ->
dep_ordered_on (
nck::
ncks).
Lemma dep_ordered_on_InMembers :
forall ncks,
dep_ordered_on ncks ->
Forall (
fun ck =>
forall id,
Is_free_in_clock id ck ->
InMembers id ncks) (
map snd ncks).
Proof.
intros ncks Hdep.
induction Hdep;
simpl;
constructor.
-
intros id Hfree.
destruct nck as [
id'
ck'];
simpl in *.
apply H in Hfree.
right.
rewrite fst_InMembers;
auto.
-
rewrite Forall_map in *.
eapply Forall_impl;
eauto.
intros [
id ck]
Hin id'
Hisfree;
simpl in *.
destruct nck as [
id''
ck''].
apply Hin in Hisfree;
auto.
Qed.
Lemma dep_ordered_dep_ordered_on :
forall ncks,
NoDupMembers ncks ->
wc_env ncks ->
dep_ordered_clocks ncks ->
dep_ordered_on ncks.
Proof with
Lemma dep_ordered_on_dep_ordered :
forall ncks,
NoDupMembers ncks ->
wc_env ncks ->
dep_ordered_on ncks ->
dep_ordered_clocks ncks.
Proof with
Corollary dep_ordered_iff :
forall vars,
NoDupMembers vars ->
wc_env vars ->
(
dep_ordered_clocks vars <->
dep_ordered_on vars).
Proof with
Corollary wc_env_dep_ordered_on_remove :
forall x xs,
NoDupMembers (
x::
xs) ->
dep_ordered_on (
x::
xs) ->
wc_env (
x::
xs) ->
wc_env xs.
Proof with
Corollary wc_env_dep_ordered_on :
forall vars,
NoDupMembers vars ->
wc_env vars ->
exists vars',
Permutation vars vars' /\
dep_ordered_on vars'.
Proof.
intros vars Hndup Hwenv.
specialize (
wc_env_dep_ordered vars Hndup Hwenv)
as [
vars' [
Hperm Hdep]].
exists vars'.
split;
auto.
eapply dep_ordered_dep_ordered_on in Hdep;
eauto.
-
rewrite <-
Hperm;
auto.
-
rewrite <-
Hperm;
auto.
Qed.
Global Instance only_depends_on_Proper:
Proper (@
Permutation.Permutation ident ==> @
eq clock ==>
iff)
only_depends_on.
Proof.
intros vars vars'
Hperm ck ck' ?;
subst.
unfold only_depends_on.
split;
intros; [
rewrite <-
Hperm|
rewrite Hperm];
eauto.
Qed.
Additional properties about WellInstantiated
Definition anon_streams (
l :
list nclock) :
list (
ident *
clock) :=
map_filter (
fun '(
ck,
id) =>
match id with
|
None =>
None
|
Some id =>
Some (
id,
ck)
end)
l.
Fact WellInstantiated_sub_fsts :
forall bck sub ins outs,
Forall2 (
WellInstantiated bck sub)
ins outs ->
map_filter sub (
map fst ins) = (
map fst (
anon_streams outs)).
Proof.
intros bck sub ins outs Hinst.
induction Hinst; simpl; auto.
destruct H as [Hsub _]; destruct y as [ck id]; simpl in *; subst.
destruct sub; simpl; [f_equal|]; auto.
Qed.
Lemma instck_only_depends_on :
forall vars bck bckvars sub ck ck',
only_depends_on bckvars bck ->
only_depends_on vars ck ->
instck bck sub ck =
Some ck' ->
only_depends_on (
bckvars++
map_filter sub vars)
ck'.
Proof with
wc_exp implies wc_clock
Definition preserving_sub bck (
sub :
ident ->
option ident) (
vars vars' :
list (
ident *
clock))
dom :=
Forall (
fun i =>
forall i'
ck ck',
sub i =
Some i' ->
instck bck sub ck =
Some ck' ->
In (
i,
ck)
vars ->
In (
i',
ck')
vars'
)
dom.
Fact preserving_sub_incl1 :
forall bck sub vars1 vars1'
vars2 dom,
incl vars1'
vars1 ->
preserving_sub bck sub vars1 vars2 dom ->
preserving_sub bck sub vars1'
vars2 dom.
Proof.
Fact preserving_sub_incl2 :
forall bck sub vars1 vars2 vars2'
dom,
incl vars2 vars2' ->
preserving_sub bck sub vars1 vars2 dom ->
preserving_sub bck sub vars1 vars2'
dom.
Proof.
Fact preserving_sub_incl3 :
forall bck sub vars vars'
dom dom',
incl dom dom' ->
preserving_sub bck sub vars vars'
dom' ->
preserving_sub bck sub vars vars'
dom.
Proof.
Global Instance preserving_sub_Proper:
Proper (@
eq clock ==> @
eq (
ident ->
option ident)
==> @
Permutation (
ident *
clock) ==> @
Permutation (
ident *
clock) ==> @
Permutation ident
==>
iff)
preserving_sub.
Proof.
intros bck bck' ?
sub sub' ?;
subst.
intros vars1 vars1'
Hperm1 vars2 vars2'
Hperm2 dom dom'
Hperm3.
split;
intro H.
1,2:
eapply preserving_sub_incl1 in H. 2:
rewrite Hperm1. 4:
rewrite <-
Hperm1. 2,4:
reflexivity.
1,2:
eapply preserving_sub_incl2 in H. 2:
rewrite Hperm2. 4:
rewrite <-
Hperm2. 2,4:
reflexivity.
1,2:
eapply preserving_sub_incl3 in H. 2:
rewrite Hperm3. 4:
rewrite <-
Hperm3. 2,4:
reflexivity.
1,2:
assumption.
Qed.
Fixpoint frees_in_clock (
ck :
clock) :=
match ck with
|
Cbase => []
|
Con ck'
id _ =>
id::(
frees_in_clock ck')
end.
Lemma Is_free_in_frees_in_clock :
forall ck,
Forall (
fun id =>
Is_free_in_clock id ck) (
frees_in_clock ck).
Proof with
eauto.
induction ck;
simpl;
constructor.
-
constructor.
-
eapply Forall_impl...
intros a H;
simpl in H.
constructor...
Qed.
Lemma only_depends_on_frees_in_clock :
forall vars ck,
only_depends_on vars ck ->
incl (
frees_in_clock ck)
vars.
Proof.
Fact instck_wc_clock :
forall vars vars'
bck sub ck ck',
wc_clock vars ck ->
wc_clock vars'
bck ->
preserving_sub bck sub vars vars' (
frees_in_clock ck) ->
instck bck sub ck =
Some ck' ->
wc_clock vars'
ck'.
Proof with
Fact WellInstantiated_wc_clock :
forall vars vars'
sub bck id ck ck'
name,
wc_clock vars ck ->
wc_clock vars'
bck ->
preserving_sub bck sub vars vars' (
frees_in_clock ck) ->
WellInstantiated bck sub (
id,
ck) (
ck',
name) ->
wc_clock vars'
ck'.
Proof.
intros vars vars'
sub bck id ck ck'
name Hwc Hwcb Hpre Hinst.
destruct Hinst as [
Hsub Hinst];
simpl in *.
eapply instck_wc_clock in Hinst;
eauto.
Qed.
Lemma WellInstantiated_wc_clocks' :
forall vars'
bck sub xs ys,
NoDupMembers xs ->
dep_ordered_on xs ->
wc_clock vars'
bck ->
wc_env xs ->
Forall2 (
WellInstantiated bck sub)
xs ys ->
(
preserving_sub bck sub xs (
anon_streams ys) (
map fst xs) /\
Forall (
wc_clock (
vars'++
anon_streams ys)) (
map fst ys)).
Proof with
Corollary WellInstantiated_wc_clocks :
forall vars'
bck sub xs ys,
NoDupMembers xs ->
wc_clock vars'
bck ->
wc_env xs ->
Forall2 (
WellInstantiated bck sub)
xs ys ->
Forall (
wc_clock (
vars'++
anon_streams ys)) (
map fst ys).
Proof with
eauto.
intros vars'
bck sub xs ys Hndup Hwc Hwenv Hwellinst.
specialize (
wc_env_dep_ordered_on _ Hndup Hwenv)
as [
xs' [
Hperm1 Hdep1]].
assert (
NoDupMembers xs')
as Hndup''
by (
rewrite <-
Hperm1;
eauto).
eapply Forall2_Permutation_1 in Hwellinst as [
ys' [
Hperm2 Hwellinst]]...
eapply WellInstantiated_wc_clocks'
in Hwellinst as (
_&?);
try rewrite app_nil_r in *;
simpl in *...
-
eapply Forall_impl. 2:
rewrite Hperm2...
intros.
unfold anon_streams.
rewrite Hperm2...
-
rewrite <-
Hperm1.
assumption.
Qed.
Lemma wc_exp_nclockof_In {
PSyn prefs} :
forall (
G: @
global PSyn prefs) Γ
e,
wc_exp G Γ
e ->
Forall (
fun '(
ck,
o) =>
LiftO True (
fun x =>
HasClock Γ
x ck)
o) (
nclockof e).
Proof.
induction e using exp_ind2;
intros *
Hwc;
inv Hwc;
simpl;
repeat constructor;
auto.
1-6:
rewrite Forall_map;
eapply Forall_forall;
intros;
simpl;
auto.
Qed.
Corollary wc_exps_nclocksof_In {
PSyn prefs} :
forall (
G: @
global PSyn prefs) Γ
es,
Forall (
wc_exp G Γ)
es ->
Forall (
fun '(
ck,
o) =>
LiftO True (
fun x =>
HasClock Γ
x ck)
o) (
nclocksof es).
Proof.
Lemma wc_exp_clockof {
PSyn prefs} :
forall (
G: @
global PSyn prefs) Γ
e,
wc_global G ->
wc_env (
idck Γ) ->
wc_exp G Γ
e ->
Forall (
wc_clock (
idck Γ)) (
clockof e).
Proof with
eauto.
Local Ltac Forall_clocksof :=
match goal with
| |-
Forall _ (
clocksof ?
es) =>
replace (
clocksof es)
with (
concat (
map clockof es))
by (
unfold clocksof;
rewrite flat_map_concat_map;
auto)
end;
apply Forall_concat;
rewrite Forall_map;
rewrite Forall_forall in *;
intros ?
Hin;
eauto.
intros *
HG Henv.
induction e using exp_ind2;
intros Hwc;
inv Hwc;
simpl;
unfold stripname;
simpl;
repeat constructor.
-
inv H0.
unfold wc_env,
idck in Henv;
simpl_Forall.
auto.
-
inv H1.
unfold wc_env,
idck in Henv;
simpl_Forall.
auto.
-
apply IHe in H1...
rewrite H3 in H1;
simpl in H1;
inv H1;
auto.
-
apply IHe1 in H3...
rewrite H5 in H3.
inv H3;
auto.
-
destruct (
clocksof es)
eqn:
Hck;
simpl in *;
try congruence.
simpl_Forall.
assert (
Exists (
fun e =>
exists l,
clockof e =
c::
l)
es).
{
clear -
Hck.
induction es;
simpl in *;
try congruence.
destruct (
clockof a)
eqn:
Hck';
simpl in *;
auto.
inv Hck.
eauto. }
simpl_Exists;
simpl_Forall.
rewrite H0 in H.
specialize (
H H3).
now inv H.
-
rewrite Forall2_eq in H6,
H7.
rewrite H6.
Forall_clocksof...
-
rewrite Forall2_eq in H6,
H7.
rewrite H6.
Forall_clocksof...
-
destruct tys; [
simpl in *;
auto|].
rewrite Forall_map.
eapply Forall_forall;
intros ?
_.
constructor... 2:
inv H4;
solve_In.
assert (
Forall (
wc_clock (
idck Γ)) (
clocksof es))
as Hwc.
{
Forall_clocksof... }
clear H.
eapply Forall_Forall in H6...
destruct (
clocksof es);
simpl in *;
try congruence.
inv H6.
destruct H1;
subst...
-
destruct es as [|(?&?)]; [
simpl in *;
auto;
exfalso;
auto|].
inv H.
inv H5.
inv H6.
assert (
Forall (
wc_clock (
idck Γ)) (
clocksof l))
as Hwc.
{
Forall_clocksof... }
clear H2.
eapply Forall_Forall in H5...
inv H7.
simpl in *.
destruct (
clocksof l).
1:{
destruct tys;
simpl in *;
auto;
try congruence. }
rewrite Forall_map.
eapply Forall_forall;
intros ?
Hin.
inv Hwc.
inv H5.
destruct H12;
subst...
inv H...
-
apply IHe in H5.
rewrite Forall_map.
eapply Forall_forall;
intros ?
_...
rewrite H6 in H5;
inv H5...
-
assert (
Forall (
wc_clock (
idck Γ)) (
clocksof es))
as Hwc.
{
Forall_clocksof. }
clear H.
eapply wc_find_node in H7 as [
G'
Hwcnode]...
assert (
wc_clock (
idck Γ)
bck)
as Hbck.
{
eapply WellInstantiated_bck in H8...
+
rewrite <-
clocksof_nclocksof in H8.
rewrite Forall_forall in Hwc.
apply Hwc in H8...
+
now inv Hwcnode.
+
rewrite map_length.
apply n_ingt0... }
specialize (
Forall2_app H8 H9)
as Hinst.
eapply WellInstantiated_wc_clocks in Hinst...
+
rewrite map_app,
map_map,
Forall_app in Hinst.
destruct Hinst as [
_ Hinst].
rewrite Forall_map in Hinst.
rewrite Forall_map.
eapply Forall_impl; [|
eauto].
intros (?&?) ?;
simpl in *.
eapply wc_clock_incl...
unfold anon_streams;
rewrite map_filter_app.
repeat rewrite <-
app_assoc.
repeat apply incl_app.
*
apply incl_refl.
*
eapply wc_exps_nclocksof_In in H5;
eauto.
intros ?
Hmap.
simpl_In.
eapply Forall_forall in H5;
eauto;
simpl in *.
destruct o;
simpl in *;
auto;
try congruence.
inv Hf.
inv H5;
solve_In.
*
intros ?
Hmap.
simpl_In.
congruence.
+
erewrite fst_NoDupMembers,
map_app, 2
map_map,
map_ext,
map_ext with (
l:=
n_out n).
apply n_nodup.
1,2:
intros;
unfold decl in *;
destruct_conjs;
auto.
+
now inv Hwcnode.
Qed.
Corollary wc_exp_clocksof {
PSyn prefs} :
forall (
G: @
global PSyn prefs) Γ
es,
wc_global G ->
wc_env (
idck Γ) ->
Forall (
wc_exp G Γ)
es ->
Forall (
wc_clock (
idck Γ)) (
clocksof es).
Proof with
Lemma wc_clock_is_free_in :
forall vars ck,
wc_clock vars ck ->
forall x,
Is_free_in_clock x ck ->
InMembers x vars.
Proof.
intros *
Hwc ?
Hfree.
induction Hwc;
inv Hfree;
eauto using In_InMembers.
Qed.
Section interface_incl.
Context {
PSyn1 PSyn2 :
list decl ->
block ->
Prop}.
Context {
prefs1 prefs2 :
PS.t}.
Variable G1 : @
global PSyn1 prefs1.
Variable G2 : @
global PSyn2 prefs2.
Hypothesis Heq :
global_iface_incl G1 G2.
Hint Constructors wc_exp :
lclocking.
Fact iface_incl_wc_exp :
forall Γ
e,
wc_exp G1 Γ
e ->
wc_exp G2 Γ
e.
Proof with
eauto with lclocking.
induction e using exp_ind2;
intros Hwc;
inv Hwc...
1-6:
econstructor;
try (
destruct Heq;
erewrite <-
equiv_program_enums)...
all:
simpl_Forall...
-
intros ??;
subst;
simpl in *.
specialize (
H11 _ eq_refl).
rewrite Forall_forall in *...
-
apply Heq in H7 as (?&?&?&?&?&?).
econstructor;
eauto.
1,2:
simpl_Forall;
eauto.
instantiate (1:=
sub).
instantiate (1:=
bck).
1,2:
erewrite map_ext, <-
map_map, <-?
H4, <-?
H7,
map_map;
eauto. 1,3:
simpl_Forall.
1,2:
instantiate (1:=
fun '(
x, (
ty,
ck)) => (
x,
ck));
eauto.
1,2:
intros;
destruct_conjs;
auto.
Qed.
Fact iface_incl_wc_equation :
forall Γ
equ,
wc_equation G1 Γ
equ ->
wc_equation G2 Γ
equ.
Proof with
eauto.
intros ? [
xs es]
Hwc.
simpl in *.
inv Hwc.
2:
econstructor;
eauto;
rewrite Forall_forall in *;
eauto using iface_incl_wc_exp.
apply Heq in H3 as (?&?&?&?&?&?).
econstructor;
eauto.
1,2:
simpl_Forall;
eauto using iface_incl_wc_exp.
instantiate (1:=
sub).
instantiate (1:=
bck).
1,2:
erewrite map_ext, <-
map_map, <-?
H8, <-?
H9,
map_map;
eauto. 1,3:
simpl_Forall.
2:
rewrite Forall3_map_1 in *;
eapply Forall3_impl_In; [|
eauto];
intros;
destruct_conjs;
simpl in *.
1,2:
instantiate (1:=
fun '(
x, (
ty,
ck)) => (
x,
ck));
eauto.
1,2:
intros;
destruct_conjs;
auto.
Qed.
Fact iface_incl_wc_scope {
A} (
P_wc1 P_wc2:
_ ->
_ ->
Prop) :
forall Γ
locs (
blks :
A),
(
forall Γ,
P_wc1 Γ
blks ->
P_wc2 Γ
blks) ->
wc_scope P_wc1 G1 Γ (
Scope locs blks) ->
wc_scope P_wc2 G2 Γ (
Scope locs blks).
Proof.
intros *
Hp Hwc.
inv Hwc.
econstructor;
eauto.
-
simpl_Forall.
destruct o as [(?&?)|];
simpl in *;
auto.
destruct_conjs;
split;
eauto using iface_incl_wc_exp.
Qed.
Fact iface_incl_wc_block :
forall d Γ,
wc_block G1 Γ
d ->
wc_block G2 Γ
d.
Proof.
End interface_incl.
Lemma iface_incl_wc_node {
PSyn prefs} (
G1 G2 : @
global PSyn prefs) :
forall n,
global_iface_incl G1 G2 ->
wc_node G1 n ->
wc_node G2 n.
Proof.
Global Hint Resolve iface_incl_wc_exp iface_incl_wc_equation iface_incl_wc_block :
lclocking.
wc implies wl
Local Hint Constructors wl_exp wl_block :
lclocking.
Fact wc_exp_wl_exp {
PSyn prefs} :
forall (
G: @
global PSyn prefs) Γ
e,
wc_exp G Γ
e ->
wl_exp G e.
Proof with
Global Hint Resolve wc_exp_wl_exp :
lclocking.
Corollary Forall_wc_exp_wl_exp {
PSyn prefs} :
forall (
G: @
global PSyn prefs) Γ
es,
Forall (
wc_exp G Γ)
es ->
Forall (
wl_exp G)
es.
Proof.
intros. simpl_Forall; eauto with lclocking. Qed.
Global Hint Resolve Forall_wc_exp_wl_exp :
lclocking.
Fact wc_equation_wl_equation {
PSyn prefs} :
forall (
G: @
global PSyn prefs) Γ
equ,
wc_equation G Γ
equ ->
wl_equation G equ.
Proof with
Global Hint Resolve wc_equation_wl_equation :
lclocking.
Fact wc_scope_wl_scope {
A} (
P_wc:
_ ->
_ ->
Prop) (
P_wl:
_ ->
Prop) {
PSyn prefs} (
G: @
global PSyn prefs) :
forall locs (
blks:
A) Γ,
(
forall Γ,
P_wc Γ
blks ->
P_wl blks) ->
wc_scope P_wc G Γ (
Scope locs blks) ->
wl_scope P_wl G (
Scope locs blks).
Proof.
intros *
Hp Hwc.
inv Hwc.
constructor;
eauto.
simpl_Forall.
destruct o as [(?&?)|];
simpl in *;
auto;
destruct_conjs.
split;
eauto with lclocking.
rewrite <-
length_clockof_numstreams,
H2;
auto.
Qed.
Fact wc_block_wl_block {
PSyn prefs} :
forall (
G: @
global PSyn prefs)
d Γ,
wc_block G Γ
d ->
wl_block G d.
Proof.
Global Hint Resolve wc_block_wl_block :
lclocking.
Fact wc_node_wl_node {
PSyn prefs} :
forall (
G: @
global PSyn prefs)
n,
wc_node G n ->
wl_node G n.
Proof with
eauto with lclocking.
intros G n Wcn.
inv Wcn;
subst Γ.
econstructor...
simpl_Forall.
destruct o;
simpl in *;
auto.
destruct_conjs;
split...
now rewrite <-
length_clockof_numstreams,
H4.
Qed.
Global Hint Resolve wc_node_wl_node :
lclocking.
Fact wc_global_wl_global {
PSyn prefs} :
forall (
G: @
global PSyn prefs),
wc_global G ->
wl_global G.
Proof with
Global Hint Resolve wc_global_wl_global :
lclocking.
wc implies wx
Global Hint Constructors wx_exp wl_block :
lclocking.
Lemma wc_clock_wx_clock :
forall vars ck,
wc_clock (
idck vars)
ck ->
wx_clock vars ck.
Proof.
induction ck;
intros *
Hwc;
inv Hwc;
constructor;
eauto;
simpl_In.
econstructor;
eauto using In_InMembers.
Qed.
Fact wc_exp_wx_exp {
PSyn prefs} (
G: @
global PSyn prefs) :
forall Γ
e,
wc_exp G Γ
e ->
wx_exp Γ
e.
Proof with
eauto with senv lclocking.
induction e using exp_ind2;
intros Hwt;
inv Hwt;
econstructor;
repeat match goal with
|
H:
forall _,
Some _ =
Some _ ->
_ |-
_ =>
specialize (
H _ eq_refl)
|
_ =>
simpl_Forall;
intros;
subst
end;
eauto with senv lclocking.
Qed.
Global Hint Resolve wc_clock_wx_clock wc_exp_wx_exp :
lclocking.
Corollary Forall_wc_exp_wx_exp {
PSyn prefs} (
G: @
global PSyn prefs) :
forall Γ
es,
Forall (
wc_exp G Γ)
es ->
Forall (
wx_exp Γ)
es.
Proof.
Global Hint Resolve Forall_wc_exp_wx_exp :
lclocking.
Fact wc_equation_wx_equation {
PSyn prefs} (
G: @
global PSyn prefs) :
forall Γ
equ,
wc_equation G Γ
equ ->
wx_equation Γ
equ.
Proof with
eauto with senv lclocking.
intros ? [
xs es]
Heq.
inv Heq;
repeat constructor...
+
eapply Forall2_ignore2 in H7.
simpl_Forall...
+
eapply Forall2_ignore2 in H2.
simpl_Forall...
Qed.
Global Hint Resolve wc_equation_wx_equation :
lclocking.
Fact wc_scope_wx_scope {
A} (
P_wc:
_ ->
_ ->
Prop) (
P_wx:
_ ->
_ ->
Prop) {
PSyn prefs} (
G: @
global PSyn prefs) :
forall locs (
blks:
A) Γ,
(
forall Γ,
P_wc Γ
blks ->
P_wx Γ
blks) ->
wc_scope P_wc G Γ (
Scope locs blks) ->
wx_scope P_wx Γ (
Scope locs blks).
Proof.
intros * Hp Hwc. inv Hwc.
econstructor; eauto.
simpl_Forall. destruct o as [(?&?)|]; simpl in *; auto; destruct_conjs.
eauto with lclocking.
Qed.
Fact wc_block_wx_block {
PSyn prefs} (
G: @
global PSyn prefs) :
forall blk Γ,
wc_block G Γ
blk ->
wx_block Γ
blk.
Proof.
induction blk using block_ind2;
intros *
Wc;
inv Wc;
eauto.
all:
econstructor;
simpl_Forall;
eauto with lclocking.
-
take (
wc_branch _ _)
and inv it.
constructor.
simpl_Forall.
eapply wx_block_incl; [| |
eauto];
eauto.
intros *
Hv.
inv Hv.
simpl_In.
edestruct H5 as (?&?);
eauto with senv.
-
eapply wx_exp_incl; [| |
eauto with lclocking];
eauto.
intros ?
Hv.
inv Hv.
apply fst_InMembers in H3.
simpl_In.
edestruct H7 as (
Has&
_).
econstructor;
eauto.
inv Has.
constructor;
eauto using In_InMembers.
-
take (
wc_branch _ _)
and inv it;
destruct_conjs.
constructor.
destruct s;
destruct_conjs.
split;
simpl_Forall.
+
eapply wx_exp_incl,
wc_exp_wx_exp. 3:
eauto.
all:
eauto.
intros *
Hv;
inv Hv.
simpl_In.
edestruct H7 as (
Hck&
_);
eauto with senv.
+
eapply wx_scope_incl,
wc_scope_wx_scope. 5:
eauto.
all:
eauto.
*
intros *
Hv;
inv Hv.
simpl_In.
edestruct H7 as (
Hck&
_);
eauto with senv.
*
intros * ?? (?&?);
split;
simpl_Forall;
eauto using wx_block_incl,
wx_exp_incl.
*
intros * (?&?);
split;
simpl_Forall;
eauto using wc_exp_wx_exp.
-
eapply wc_scope_wx_scope;
eauto.
intros;
simpl_Forall;
eauto.
Qed.
Global Hint Resolve wc_block_wx_block :
lclocking.
Fact wc_node_wx_node {
PSyn prefs} :
forall (
G: @
global PSyn prefs)
n,
wc_node G n ->
wx_node n.
Proof with
eauto with lclocking.
intros G n Wc. inv Wc; subst Γ.
econstructor...
simpl_Forall. destruct o; simpl in *; auto.
destruct_conjs...
Qed.
Global Hint Resolve wc_node_wx_node :
lclocking.
Fact wc_global_wx_global {
PSyn prefs} :
forall (
G: @
global PSyn prefs),
wc_global G ->
wx_global G.
Proof with
Global Hint Resolve wc_global_wx_global :
lclocking.
Additional properties
Lemma wc_block_Is_defined_in {
PSyn prefs} (
G: @
global PSyn prefs) :
forall blk Γ
x,
wc_block G Γ
blk ->
Is_defined_in x blk ->
InMembers x Γ.
Proof.
Lemma wc_scope_Is_defined_in {
A}
P_wc P_def {
PSyn prefs} (
G: @
global PSyn prefs) :
forall Γ
locs (
blks:
A)
x,
wc_scope P_wc G Γ (
Scope locs blks) ->
Is_defined_in_scope P_def x (
Scope locs blks) ->
(
forall Γ,
P_wc Γ
blks ->
P_def blks ->
InMembers x Γ) ->
InMembers x Γ.
Proof.
Change unifying substitution
Lemma instck_refines :
forall bck sub1 sub2 ck ck',
(
forall x y,
sub1 x =
Some y ->
sub2 x =
Some y) ->
instck bck sub1 ck =
Some ck' ->
instck bck sub2 ck =
Some ck'.
Proof.
intros *
Hsub.
revert ck'.
induction ck;
intros *
Hinst;
simpl in *;
auto.
cases_eqn Heq.
-
inv Hinst.
specialize (
IHck _ eq_refl).
inv IHck.
apply Hsub in Heq0.
rewrite Heq0 in Heq2.
inv Heq2;
auto.
-
apply Hsub in Heq0.
rewrite Heq0 in Heq2.
inv Heq2.
-
specialize (
IHck _ eq_refl).
inv IHck.
Qed.
Lemma WellInstantiated_refines1 :
forall bck sub1 sub2 x ck1 ck2 o,
(
forall x y,
sub1 x =
Some y ->
sub2 x =
Some y) ->
sub2 x =
o ->
WellInstantiated bck sub1 (
x,
ck1) (
ck2,
None) ->
WellInstantiated bck sub2 (
x,
ck1) (
ck2,
o).
Proof.
intros *
Hsub1 Hsub2 (
Hs&
Hinst);
simpl in *.
split;
eauto using instck_refines;
simpl.
Qed.
Lemma WellInstantiated_refines2 :
forall bck sub1 sub2 x ck1 ck2 y,
(
forall x y,
sub1 x =
Some y ->
sub2 x =
Some y) ->
WellInstantiated bck sub1 (
x,
ck1) (
ck2,
Some y) ->
WellInstantiated bck sub2 (
x,
ck1) (
ck2,
Some y).
Proof.
intros *
Hsub1 (
Hs&
Hinst);
simpl in *.
split;
eauto using instck_refines;
simpl.
Qed.
Additional helper lemmas
Lemma map_filter_clo_HasClock1 :
forall Γ Γ'
ck,
(
forall x ck',
HasClock Γ'
x ck' ->
HasClock Γ
x ck /\
ck' =
Cbase) ->
forall x ck',
HasClock Γ'
x ck' ->
HasClock
(
map_filter (
fun '(
x2,
ann0) =>
if clo ann0 ==
b ck then Some (
x2,
ann_with_clock ann0 Cbase)
else None) Γ)
x ck'.
Proof.
intros *
Cks *
Ck.
edestruct Cks as (
Ck'&?);
eauto;
subst.
inv Ck'.
econstructor.
solve_In.
simpl.
rewrite equiv_decb_refl.
eauto.
auto.
Qed.
Lemma map_filter_clo_IsLast1 :
forall Γ Γ'
ck,
NoDupMembers Γ ->
(
forall x ck',
HasClock Γ'
x ck' ->
HasClock Γ
x ck /\
ck' =
Cbase) ->
(
forall x,
IsLast Γ'
x ->
IsLast Γ
x) ->
forall x,
IsLast Γ'
x ->
IsLast (
map_filter (
fun '(
x2,
ann0) =>
if clo ann0 ==
b ck then Some (
x2,
ann_with_clock ann0 Cbase)
else None) Γ)
x.
Proof.
intros *
ND Cks Ls *
L.
specialize (
Ls _ L).
inv L.
edestruct Cks as (
Ck'&?);
eauto with senv;
subst.
inv Ls.
inv Ck'.
eapply NoDupMembers_det in H2;
eauto.
subst.
econstructor.
solve_In.
simpl.
rewrite equiv_decb_refl.
eauto.
auto.
Qed.
End LCLOCKING.
Module LClockingFun
(
Ids :
IDS)
(
Op :
OPERATORS)
(
OpAux :
OPERATORS_AUX Ids Op)
(
Cks :
CLOCKS Ids Op OpAux)
(
Senv :
STATICENV Ids Op OpAux Cks)
(
Syn :
LSYNTAX Ids Op OpAux Cks Senv)
<:
LCLOCKING Ids Op OpAux Cks Senv Syn.
Include LCLOCKING Ids Op OpAux Cks Senv Syn.
End LClockingFun.