From compcert Require Import common.Events.
From compcert Require Import common.Values.
From compcert Require Import common.Globalenvs.
From compcert Require Import cfrontend.Clight.
From compcert Require Import lib.Integers.
From Velus Require Import Common.
From Velus Require Import Ident.
From Velus Require Import ObcToClight.Interface.
From Coq Require Import List.
Import List.ListNotations.
Import IStr.
Import OpAux.
Import Obc.Syn.
Section finite_traces.
Variable p:
Clight.program.
Definition eventval_of_val (
v:
val):
eventval :=
match v with
|
Vint i =>
EVint i
|
Vlong i =>
EVlong i
|
Vfloat f =>
EVfloat f
|
Vsingle f =>
EVsingle f
|
Vptr _ _ =>
EVint Int.zero
|
Vundef =>
EVint Int.zero
end.
Lemma eventval_of_val_match:
forall v t,
wt_val v t ->
eventval_match (
globalenv p)
(
eventval_of_val v)
(
AST.type_of_chunk (
type_chunk t))
v.
Proof.
destruct v; intros * Wt; inv Wt; simpl; try econstructor.
destruct sz; try destruct sg; econstructor.
Qed.
Definition load_event_of_val (
v:
val) (
xt:
ident *
type):
event :=
Event_vload (
type_chunk (
snd xt))
(
prefix_glob (
fst xt))
Ptrofs.zero (
eventval_of_val v).
Definition store_event_of_val (
v:
val) (
xt:
ident *
type):
event :=
Event_vstore (
type_chunk (
snd xt))
(
prefix_glob (
fst xt))
Ptrofs.zero (
eventval_of_val v).
Definition mk_events (
f:
val ->
ident *
type ->
event) (
vs:
list val) (
args:
list (
ident *
type)) :
trace :=
map (
fun vxt =>
f (
fst vxt) (
snd vxt)) (
combine vs args).
Definition load_events :
list val ->
list (
ident *
type) ->
trace :=
mk_events load_event_of_val.
Definition store_events :
list val ->
list (
ident *
type) ->
trace :=
mk_events store_event_of_val.
Lemma mk_events_nil:
forall f vs,
mk_events f vs [] = [].
Proof.
intros; destruct vs; simpl; auto. Qed.
Lemma mk_events_cons:
forall f v vs xt xts,
mk_events f (
v ::
vs) (
xt ::
xts) =
f v xt ::
mk_events f vs xts.
Proof.
auto. Qed.
Corollary load_events_nil :
forall vs,
load_events vs [] = [].
Proof.
Corollary load_events_cons :
forall v vs xt xts,
load_events (
v ::
vs) (
xt ::
xts) = [
load_event_of_val v xt] ++
load_events vs xts.
Proof.
Corollary store_events_nil :
forall vs,
store_events vs [] = [].
Proof.
Corollary store_events_cons :
forall v vs xt xts,
store_events (
v ::
vs) (
xt ::
xts) = [
store_event_of_val v xt] ++
store_events vs xts.
Proof.
End finite_traces.
Section infinite_traces.
Variable ins :
stream (
list val).
Variable outs :
stream (
list val).
Variable xs :
list (
ident *
type).
Variable ys :
list (
ident *
type).
Hypothesis xs_ys_spec:
xs <> [] \/
ys <> [].
Hypothesis Len_ins:
forall n,
length (
ins n) =
length xs.
Hypothesis Len_outs:
forall n,
length (
outs n) =
length ys.
Lemma load_store_events_not_E0:
forall n,
load_events (
ins n)
xs <>
E0 \/
store_events (
outs n)
ys <>
E0.
Proof.
intro n;
specialize (
Len_ins n);
specialize (
Len_outs n).
destruct xs_ys_spec.
-
left;
destruct xs, (
ins n);
auto;
simpl in Len_ins;
discriminate.
-
right;
destruct ys, (
outs n);
auto;
simpl in Len_outs;
discriminate.
Qed.
Program CoFixpoint mk_trace (
n:
nat):
traceinf' :=
Econsinf' (
load_events (
ins n)
xs **
store_events (
outs n)
ys)
(
mk_trace (
S n))
_.
Next Obligation.
Lemma unfold_mk_trace:
forall n,
traceinf_of_traceinf' (
mk_trace n) =
(
load_events (
ins n)
xs **
E0 **
store_events (
outs n)
ys)
***
E0
***
traceinf_of_traceinf' (
mk_trace (
S n)).
Proof.
End infinite_traces.
The trace of an Obc method
Section Obc.
Variable (
m:
method) (
ins outs:
stream (
list val)).
Hypothesis in_out_spec :
m.(
m_in) <> [] \/
m.(
m_out) <> [].
Hypothesis Len_ins :
forall n,
length (
ins n) =
length m.(
m_in).
Hypothesis Len_outs:
forall n,
length (
outs n) =
length m.(
m_out).
Program Definition trace_step (
n:
nat):
traceinf :=
traceinf_of_traceinf' (
mk_trace ins outs m.(
m_in)
m.(
m_out)
_ _ _ n).
End Obc.