Module IndexedToCoind

From Coq Require Import List.
Import List.ListNotations.
Open Scope list_scope.
From Coq Require Import Setoid.
From Coq Require Import Morphisms.
From Coq Require Import NPeano.
From Coq Require Import Omega.
From Coq Require Import Program.Tactics.

From Velus Require Import Common.
From Velus Require Import Environment.
From Velus Require Import Operators.
From Velus Require Import IndexedStreams.
From Velus Require Import CoindStreams.

Module Type INDEXEDTOCOIND
       (Import Op : OPERATORS)
       (Import OpAux : OPERATORS_AUX Op)
       (Import IStr : INDEXEDSTREAMS Op OpAux)
       (Import CStr : COINDSTREAMS Op OpAux).

BASIC CORRESPONDENCES


Definitions


A generic function to build a coinductive Stream.
  CoFixpoint init_from {A} (n: nat) (f: nat -> A) : Stream A :=
    f ninit_from (S n) f.

Translate an indexed stream into a coinductive Stream. The nth element of the result Stream is the result of the application of the input stream on n.
  Definition tr_stream_from {A} (n: nat) (xs: stream A) : Stream A :=
    init_from n xs.

  Definition tr_stream {A} : stream A -> Stream A := tr_stream_from 0.

Build a list of coinductive streams from an the integer range 0..m.
  Definition seq_streams {A} (f: nat -> Stream A) (m: nat) : list (Stream A) :=
    List.map f (seq 0 m).

Build the indexed stream corresponding to the ith elements of the input stream of lists.
  Definition streams_nth (k: nat) (xss: stream (list value)): stream value :=
    fun n => nth k (xss n) absent.

Build a coinductive Stream extracting the ith element of the list obtained at each instant n.
  Definition nth_tr_streams_from (n: nat) (xss: stream (list value)) (k: nat)
    : Stream value :=
    tr_stream_from n (streams_nth k xss).

Translate an indexed stream of list into a list of coinductive Streams using the two previous functions.
  Definition tr_streams_from (n: nat) (xss: stream (list value))
    : list (Stream value) :=
    seq_streams (nth_tr_streams_from n xss) (length (xss n)).

  Definition tr_streams: stream (list value) -> list (Stream value) :=
    tr_streams_from 0.

  Ltac unfold_tr_streams :=
    unfold tr_streams, tr_streams_from.

Translate an history from indexed to coinductive world. Every element of the history is translated.
  Definition tr_history_from (n: nat) (H: IStr.history) : history :=
    Env.mapi (fun x _ => init_from n (fun n => match Env.find x (H n) with
                                         | Some v => v
                                         | None => absent
                                         end)) (H 0).


Translate an history from coinductive to indexed world. Every element of the history is translated.
  Definition tr_history : IStr.history -> history :=
    tr_history_from 0.

The counterpart of tr_stream_from_tl for histories.
  Lemma tr_history_from_tl:
    forall n H,
      history_tl (tr_history_from n H) = tr_history_from (S n) H.
Proof.
    now setoid_rewrite Env.mapi_mapi.
  Qed.

Properties


A basic definition-rewriting lemma.
  Lemma init_from_n:
    forall {A} (f: nat -> A) n,
      init_from n f = f ninit_from (S n) f.
Proof.
    intros; now rewrite unfold_Stream at 1.
  Qed.

init_from is compatible wrt to extensional equality.
  Add Parametric Morphism A : (@init_from A)
      with signature eq ==> eq_str ==> @EqSt A
        as init_from_morph.
Proof.
    cofix Cofix. intros x xs xs' E.
    rewrite init_from_n; rewrite (init_from_n xs').
    constructor; simpl; auto.
  Qed.

The mth element of the built stream, starting from n, is the result of the application of f at (m+n).
  Lemma init_from_nth:
    forall {A} m n (f: nat -> A),
      (init_from n f) # m = f (m + n).
Proof.
    unfold Str_nth; induction m; intros; simpl; auto.
    now rewrite IHm, <-plus_n_Sm.
  Qed.

Taking the tail of a built Stream from n is building it from S n.
  Lemma init_from_tl:
    forall {A} n (f: nat -> A),
      tl (init_from n f) = init_from (S n) f.
Proof.
    intros; rewrite init_from_n; auto.
  Qed.

A generalization for multiple tails.
  Lemma init_from_nth_tl:
    forall {A} n m (f: nat -> A),
      Str_nth_tl n (init_from m f) = init_from (n + m) f.
Proof.
    induction n; intros; simpl; auto.
    now rewrite IHn, Nat.add_succ_r.
  Qed.

The length of the range-built list of Streams is simply the difference
  Lemma seq_streams_length:
    forall {A} m (str: nat -> Stream A),
      length (seq_streams str m) = m.
Proof.
    intros; unfold seq_streams.
    now rewrite map_length, seq_length.
  Qed.

The nth element of the range-built list of Streams starting at 0 is
  Lemma nth_seq_streams:
    forall {A} m str n (xs_d: Stream A),
      n < m ->
      nth n (seq_streams str m) xs_d = str n.
Proof.
    unfold seq_streams; intros.
    rewrite map_nth' with (d':=0); simpl.
    - rewrite seq_nth; auto; omega.
    - rewrite seq_length; omega.
  Qed.

  Corollary nth_tr_streams_from_nth:
    forall n k xss xs_d,
      k < length (xss n) ->
      nth k (tr_streams_from n xss) xs_d =
      nth_tr_streams_from n xss k.
Proof.
    unfold_tr_streams.
    intros; now rewrite nth_seq_streams.
  Qed.

A generalization of tr_stream_from_tl for lists.
  Lemma tr_streams_from_tl:
    forall n xss,
      wf_streams xss ->
      List.map (@tl value) (tr_streams_from n xss) = tr_streams_from (S n) xss.
Proof.
    intros * Len.
    apply Forall2_eq, Forall2_forall2.
    split; unfold_tr_streams; rewrite map_length.
    - now rewrite 2 seq_streams_length.
    - intros * Hlen E1 E2; rewrite <-E1, <-E2.
      rewrite map_nth' with (d':=a); auto.
      rewrite seq_streams_length in Hlen.
      rewrite 2 nth_seq_streams; try omega.
      + reflexivity.
      + rewrite (Len n); omega.
  Qed.

  Lemma tr_streams_from_length:
    forall n xss,
      length (tr_streams_from n xss) = length (xss n).
Proof.
    unfold_tr_streams; intros.
    rewrite seq_streams_length; simpl; omega.
  Qed.

If at instant n, a property is true for all elements of the list
  Lemma Forall_In_tr_streams_from_hd:
    forall n P xss x,
      Forall P (xss n) ->
      In x (tr_streams_from n xss) ->
      P (hd x).
Proof.
    unfold_tr_streams; intros * Ps Hin.
    apply In_nth with (d:=x) in Hin as (k & Len & Nth).
    rewrite seq_streams_length in Len.
    rewrite nth_seq_streams in Nth; auto.
    apply eq_EqSt in Nth.
    unfold nth_tr_streams_from in Nth.
    rewrite init_from_n in Nth.
    inversion Nth as (Hhd).
    rewrite <-Hhd; simpl.
    unfold streams_nth.
    eapply Forall_forall; eauto.
    apply nth_In; auto.
  Qed.

  Lemma Exists_In_tr_streams_from_hd:
    forall n P xss,
      List.Exists P (xss n) ->
      List.Exists (fun v => P (hd v)) (tr_streams_from n xss).
Proof.
    intros * Hin.
    apply Exists_exists in Hin as (v & Hin & Hv).
    apply In_nth with (d:=absent) in Hin as (k & Len & Nth); subst.
    apply Exists_exists.
    exists (nth k (tr_streams_from n xss) (Streams.const absent)).
    split.
    - apply nth_In.
      rewrite tr_streams_from_length; auto.
    - rewrite nth_tr_streams_from_nth; auto.
  Qed.

SEMANTICS CORRESPONDENCE


  Lemma sem_var_impl_from:
    forall n H x xs,
      IStr.sem_var H x xs ->
      sem_var (tr_history_from n H) x (tr_stream_from n xs).
Proof.
    unfold IStr.sem_var, IStr.lift', sem_var_instant.
    intros * Sem.
    econstructor.
    - unfold Env.MapsTo. setoid_rewrite Env.gmapi.
      rewrite Sem; simpl; eauto.
    - unfold tr_stream_from.
      apply ntheq_eqst; intro.
      now rewrite 2 init_from_nth, Sem.
  Qed.

  Corollary sem_var_impl:
    forall H x xs,
      IStr.sem_var H x xs ->
      sem_var (tr_history H) x (tr_stream xs).
Proof.
apply sem_var_impl_from. Qed.
  Hint Resolve sem_var_impl_from sem_var_impl.

This tactic automatically uses the interpretor to give a witness stream.
  Ltac interp_str b H x Sem :=
    let Sem_x := fresh "Sem_" x in
    let sol sem interp sound :=
        assert (sem b H x (interp b H x)) as Sem_x
            by (intro; match goal with n:nat |- _ => specialize (Sem n) end;
                unfold interp, lift_interp; inv Sem; erewrite <-sound; eauto)
    in
    let sol' sem interp sound :=
        assert (sem H x (interp H x)) as Sem_x
            by (intro; match goal with n:nat |- _ => specialize (Sem n) end;
                unfold interp, lift_interp'; inv Sem; erewrite <-sound; eauto)
    in
    match type of x with
    | ident => sol' IStr.sem_var interp_var interp_var_instant_sound
    | clock => sol IStr.sem_clock interp_clock interp_clock_instant_sound
    end.

An inversion principle for sem_clock which also uses the interpretor.
  Lemma sem_clock_inv:
    forall H b bs ck x k,
      IStr.sem_clock b H (Con ck x k) bs ->
      exists bs' xs,
        IStr.sem_clock b H ck bs'
        /\ IStr.sem_var H x xs
        /\
        (forall n,
            (exists c,
                bs' n = true
                /\ xs n = present c
                /\ val_to_bool c = Some k
                /\ bs n = true)
            \/
            (bs' n = false
             /\ xs n = absent
             /\ bs n = false)
            \/
            (exists c,
                bs' n = true
                /\ xs n = present c
                /\ val_to_bool c = Some (negb k)
                /\ bs n = false)
        ).
Proof.
    intros * Sem.
    interp_str b H ck Sem.
    interp_str b H x Sem.
    do 2 eexists; intuition; eauto.
       specialize (Sem_ck n); specialize (Sem_x n); specialize (Sem n); inv Sem.
       - left; exists c; repeat split; auto; intuition sem_det.
       - right; left; repeat split; auto; intuition sem_det.
       - right; right; exists c; intuition; try sem_det.
         now rewrite Bool.negb_involutive.
  Qed.

We can then deduce the correspondence lemma for sem_clock. We go by induction on the clock ck then we use the above inversion lemma.
  Corollary sem_clock_impl_from:
    forall H b ck bs,
      IStr.sem_clock b H ck bs ->
      forall n, sem_clock (tr_history_from n H) (tr_stream_from n b) ck
                     (tr_stream_from n bs).
Proof.
    induction ck; intros * Sem n.
    - constructor.
      revert Sem n; cofix CoFix; intros.
      rewrite init_from_n; rewrite (init_from_n bs).
      constructor; simpl; auto.
      specialize (Sem n); now inv Sem.
    - apply sem_clock_inv in Sem as (bs' & xs & Sem_bs' & Sem_xs & Spec).
      revert Spec n; cofix CoFix; intros.
      rewrite (init_from_n bs).
      apply IHck with (n:=n) in Sem_bs';
        rewrite (init_from_n bs') in Sem_bs'.
      apply (sem_var_impl_from n) in Sem_xs;
        rewrite (init_from_n xs) in Sem_xs.
      destruct (Spec n) as [|[]]; destruct_conjs;
        repeat match goal with H:_ n = _ |- _ => rewrite H in *; clear H end.
      + econstructor; eauto.
        rewrite init_from_tl, tr_history_from_tl; auto.
      + econstructor; eauto.
        rewrite init_from_tl, tr_history_from_tl; auto.
      + rewrite <-(Bool.negb_involutive b0).
        eapply Son_abs2; eauto.
        rewrite init_from_tl, tr_history_from_tl; auto.
        rewrite Bool.negb_involutive; auto.
  Qed.
  Hint Resolve sem_clock_impl_from.

  Corollary sem_clock_impl:
    forall H b ck bs,
      IStr.sem_clock b H ck bs ->
      sem_clock (tr_history H) (tr_stream b) ck (tr_stream bs).
Proof.
intros; apply sem_clock_impl_from; auto. Qed.
  Hint Resolve sem_clock_impl.

End INDEXEDTOCOIND.

Module IndexedToCoindFun
       (Op : OPERATORS)
       (OpAux : OPERATORS_AUX Op)
       (IStr : INDEXEDSTREAMS Op OpAux)
       (CStr : COINDSTREAMS Op OpAux)
<: INDEXEDTOCOIND Op OpAux IStr CStr.
  Include INDEXEDTOCOIND Op OpAux IStr CStr.
End IndexedToCoindFun.