
Préparée à l’École normale supérieure

Verified Compilation of a Synchronous Dataflow Language
with State Machines

Soutenue par

Basile Pesin
Le 13 octobre 2023

École doctorale no386
Sciences Mathématiques
de Paris Centre

Spécialité
Informatique

Composition du jury :

Magnus Myreen
Chalmers University of Technology Rapporteur

Robert de Simone
Inria Rapporteur

Carlos Agon
IRCAM Examinateur

Julien Forget
Université de Lille Examinateur

Xavier Leroy
Collège de France Examinateur

Florence Maraninchi
Université Grenoble Alpes Présidente

Timothy Bourke
Inria / ENS Co-Directeur

Marc Pouzet
ENS / Inria Co-Directeur

Remerciements
Avant de commencer, je souhaiterais remercier mes rapporteurs, Magnus Myreen et

Robert de Simone, pour avoir pris le temps de lire ce long document, et pour leurs conseils
avisés. Je remercie aussi Carlos Agon, Julien Forget, Xavier Leroy et Florence Maraninchi
pour avoir accepté de participer à mon jury de thèse et pour avoir prêté attention à mon
travail.

Ce travail n’aurait pas pu voir le jour sans le soutien de mes encadrants Timothy
Bourke et Marc Pouzet qui m’ont accueilli comme stagiaire il y a presque quatre ans, puis
m’ont renouvelé leur confiance pour trois années de thèse. Malgré deux confinements
et leurs nombreuses responsabilités, ils ont toujours été disponibles pour me conseiller
et m’orienter pendant ces années de travail. Il m’ont transmis une méthode de travail
rigoureuse et affiné mon esprit critique. Je n’aurais pas pu espérer de meilleurs directeurs
de thèse.

Ces années n’auraient pas été aussi agréables sans l’esprit de camaraderie partagé
dans l’équipe PARKAS. Au delà de leurs conseils, les membres permanents, Tim, Marc,
et Guillaume, ont toujours su partager leur travail et donner envie de s’y intéresser. Il
a toujours été agréable de discuter de nos travaux (ou d’autre choses) avec les autres
thésards de l’équipe, Paul J, Baptiste et Grégoire. En particulier, merci à Paul pour
m’avoir motivé à m’entrainer au baby-foot: après tous ces efforts, j’ai enfin atteint un
niveau passable ! Enfin, les stagiaires, Astyax, Antonin, Reyyan, Carolina, Vrushank,
Paul R, Victor et Antoine, ont rythmé la vie de l’équipe et apporté un regard frais sur
nos travaux.

J’ai aussi eu le plaisir d’enseigner à Jussieu, ma fac d’origine. Je remercie tous les
responsables d’UE qui m’ont fait suffisemment confiance pour me confier des étudiants:
Carlos Agon, Emmanuel Chailloux, Stéphane Doncieux, Mathieu Jaume, Pascal Manoury
et Fréderic Peschanski. Enseigner a été extrêmement formateur, et toujours un plaisir.

Merci aussi à Léo Andrès, Colin Gonzalez et Loïc Sylvestre, avec qui j’ai pu organiser
le meetup OCaml. Merci également à Gabriel Scherer, qui en plus de nous aider à trouver
de nombreux orateurs passionnants, nous a permis de financer les pizzas sans lesquelles le
meetup n’aurait pas été le même.

Enfin, je remercie ma famille pour leur soutien pendant mes (trop?) longues études.
Mes parents, Laure-Anne et Philippe ont toujours supporté mes décisions. La complicité
de mon frère, Jules, a ouvert mes horizons. J’ai eu la chance de rencontrer Mannielin un
peu avant le début de ma thèse. Nous nous sommes installés ensemble il y a presque trois
ans, et je la remercie pour sa patience et ses encouragements au quotidien. Elle a su me
protéger de mes plus mauvais instincts, mon anxiété et mon workaholisme. Son soutien
et son amour m’ont permis d’aller jusqu’au bout.

i

Résumé
Les systèmes embarqués critiques sont souvent spécifiés par des formalismes schéma-
bloc. SCADE Suite est un environnement de développement pour ces systèmes utilisé
depuis vingt ans dans l’industrie avionique, nucléaire, automobile, et autres domaines
critiques. Son formalisme graphique se traduit en une représentation textuelle basée sur le
langage synchrone à flots de données Lustre, et incorpore des fonctionnalités de langages
plus récents comme Lucid Synchrone. En Lustre, un programme est défini comme un
ensemble d’équations qui spécifie la relation entre entrées et sorties du programme à
chaque instant. Le langage des expressions inclut des opérateurs arithmétiques et logiques,
des opérateurs de délais qui permettent d’accéder à la précédente valeur d’une expression,
et des opérateurs d’échantillonnage qui permettent à certaines valeurs d’être calculées
moins souvent que d’autres.

Le projet Vélus est une formalisation d’un sous-ensemble du langage Scade 6 dans
l’assistant de preuves Coq. Il propose une formalisation de la sémantique dynamique du
langage sous forme de relations entre flots infinis d’entrées et de sorties. Il inclut aussi un
compilateur qui utilise CompCert, un compilateur vérifié pour C, pour produire du code
assembleur. Enfin, il fournit une preuve de bout-en-bout que ce compilateur préserve la
sémantique à flots de données des programmes sources.

Cette thèse étends Vélus en y ajoutant les blocs de contrôles de Scade 6 et Lucid
Synchrone, ce qui inclut une construction qui contrôle l’activation des équations selon une
condition (switch), une construction permettant d’accéder à la valeur précédente d’une
variable (last), une construction qui réinitialise les opérateurs de délai (reset), et, enfin, des
machines à états hiérarchiques, qui permettent la spécification de comportements modaux
complexes. Toutes ces constructions peuvent être arbitrairement imbriquées dans un
programme. Nous étendons la sémantique de Vélus avec une nouvelle spécification pour
ces constructions qui encode leur comportement par l’échantillonnage. Nous proposons
un schéma d’induction générique pour les programmes bien formés qui permet de prouver
certaines propriétés du modèle sémantique, comme son déterminisme ou l’adhérence des
valeurs aux types déclarés. Enfin, nous décrivons la compilation de ces constructions telle
qu’implémentée dans Vélus. Nous montrons que le modèle de compilation qui réécrit ces
constructions dans le langage noyau peut être implémenté, spécifié et vérifié dans Coq.
La compilation de last et reset nécessite des changements plus profonds dans les langages
intermédiaires de Vélus.

ii

Abstract
Safety-critical embedded systems are often specified using block-diagram formalisms.
SCADE Suite is a development environment for such systems which has been used
industrially in avionics, nuclear plants, automotive and other safety-critical contexts for
twenty years. Its graphical formalism translates to a textual representation based on the
Lustre synchronous dataflow language, with extensions from later languages like Lucid
Synchrone. In Lustre, a program is defined as a set of equations that relate inputs and
outputs of the program at each discrete time step. The language of expressions at right of
equations includes arithmetic and logic operators, delay operators that access the previous
value of an expression, and sampling operators that allow some values to be calculated
less often than others.

The Vélus project aims at formalizing a subset of the Scade 6 language in the Coq
Proof Assistant. It proposes a specification of the dynamic semantics of the language as
a relation between infinite streams of inputs and outputs. It also includes a compiler that
uses CompCert, a verified compiler for C, as its back end to produce assembly code, and
an end-to-end proof that compilation preserves the semantics of dataflow programs.

In this thesis, we extend Vélus to support control blocks present in Scade 6 and Lucid
Synchrone, which includes a construction that controls the activation of equations based
on a condition (switch), a construction that accesses the previous value of a named variable
(last), a construction that re-initializes delay operators (reset), and finally, hierarchical
state machines, which allow for the definition of complex modal behaviors. All of these
constructions may be arbitrarily nested in a program. We extend the existing semantics
of Vélus with a novel specification for these constructs that encodes their behavior using
sampling. We propose a generic induction principle for well-formed programs, which is
used to prove properties of the semantic model such as determinism and type system
correctness. Finally, we describe the extension of the Vélus compiler to handle these new
constructs. We show that the existing compilation scheme that lowers these constructs into
the core dataflow language can be implemented, specified and verified in Coq. Compiling
the reset and last constructs requires deeper changes in the intermediate languages of
Vélus.

iii

Résumé étendu

La thèse étant rédigée en anglais, nous résumons ici les points scientifiques principaux
décrits dans chaque chapitre, en français.

Introduction

Les systèmes embarqués critiques sont couramment programmés au moyen de langages
synchrones [BB91], qui permettent d’abstraire le temps physique continu en temps logique
discret. Un programme synchrone lit ses entrées, exécute des calculs internes et écrit ses
sorties au sein d’un même instant logique. Cela signifie que deux programmes commu-
niquent de manière synchrone à chaque instant logique, ce qui rend les communications
atomiques et la concurrence déterministe. Dans cette thèse, on s’intéresse plus partic-
ulièrement aux langages synchrones à flots de données, dans lesquels chaque programme
spécifie la relation entre ses entrées et sorties sous forme d’équations.

Vélus [PLDI17; POPL20; EMSOFT21] est un projet de mécanisation pour un langage
synchrone à flots de données basé sur Lustre [Hal+91] et Scade [CPP17] dans l’assistant
de preuve Coq [Coq]. Le langage est spécifié par une sémantique relationelle à flots de
données. Vélus inclut également un compilateur qui génère un programme C qui est
ensuite passé au compilateur CompCert [Ler09b] qui produit du code assembleur.

Cette chaîne de compilation est prouvée correcte, au sens où, si l’on peut associer une
sémantique à flots de données au programme source G, et si le compilateur produit un
programme assembleur P à partir de G, alors P a une sémantique, et cette sémantique
correspond à celle du source. Ce résultat est formalisé dans le théorème de la page 11,
qui est établi par une preuve mécanisée en Coq.

Cette thèse présente une extension de Vélus aux blocs de contrôles inspirés de Lu-
cid Synchrone [CHP06] et Scade 6 [CPP17]. Ces constructions contrôlent l’activation des
équations du programme. On les présente d’abord au moyen d’un exemple de système
embarqué simple : le moteur pas à pas utilisé dans une petite imprimante thermique.

On donne d’abord, en page 7, l’exemple d’un nœud utilisant seulement les constructions
du langage noyau pour calculer la somme de ses entrées. Il utilise l’opérateur fby, qui

v

permet d’accéder à la valeur précédente d’un flot. L’exemple présenté en page 8 utilise un
bloc switch pour implémenter la séquence de contrôle des phases du moteur pas à pas. A
chaque fois que la condition step est vraie, les phases sont mises à jour, et le moteur tourne
d’un quart de tour dans le sens anti-horaire. L’exemple utilise aussi l’opérateur last
pour accéder à la dernière valeur d’une variable partagée. La valeur initiale de last x
doit être systématiquement spécifiée, puisque Vélus n’utilise pas d’analyse d’initialisation.
Par ailleurs, l’équation grisée dans la seconde branche du switch peut être omise. En
effet, la sémantique et le compilateur complètent les définitions partielles des variables
définies avec last. Cela permet d’écrire des programmes dans un style plus impératif,
avec des variables d’état mises à jour seulement quand elles sont explicitement définies.

Enfin, l’exemple de la page 9 présente le contrôle de haut niveau du moteur pas
à pas. L’application d’un bloc reset au nœud count_up permet de calculer le temps
écoulé depuis le dernier changement de phase. La longueur d’une phase est déterminée
par une machine à états hiérarchique. Une notation graphique est superimposée sur le
code source pour aider à la compréhension du programme. Dans l’état initial, Starting,
cette phase est plus longue pour permettre au moteur de prendre de la vitesse. Après
une phase, le moteur passe dans l’état Moving, ou la durée des phases est constante. Le
moteur peut être stoppé, auquel cas il passe dans l’état Holding. Si le moteur reste en
pause pendant plus d’une phase, la puissance envoyée doit être modulée par le nœud
pwm. Par ailleurs, si la pause est suffisamment courte, le retour à l’état Feeding est fait
“avec histoire” (transition continue), ce qui permet d’entrer directement dans le sous-état
Moving. Dans le cas contraire, la transition then réinitialise l’état de la machine imbriquée
dans Feeding, ce qui réactive l’état initial Starting.

Sémantique du langage Vélus

La sémantique du langage source est donnée par un ensemble de relations entre flots de
données infinis. Le jugement G ⊢ f(xss) ⇓ yss indique que le nœud f du programme G
associe les flots d’entrées xss aux flots de sorties yss . La règle de sémantique correspondante
est donnée en page 29. Elle impose l’existence d’un historique H, qui est un environnement
associant un flot à chaque variable du nœud, et en particulier à ses entrées et sorties. La
valeur d’une variable apparaissant dans une expression est également lue dans l’historique.
L’historique est contraint par chaque équation du nœud. L’équation xs = es force la
valeur de xi à être la i-ème valeur produite par les expressions es.

Les flots manipulés peuvent être échantillonnés, c’est-à-dire que certains sont calculés
moins souvent que d’autres. Dans Vélus, on caractérise l’échantillonnage explicitement
par des valeurs présentes (notées ‹v›) et absentes (notées ‹›). L’expression e when C(x)
échantillonne les valeurs de l’expression e, en ne les conservant qu’aux instants ou la
condition x vaut C. Cette opération est mécanisée par l’opérateur when, défini comme
une fonction co-inductive et partielle. L’opérateur merge permet de combiner des flots
échantillonnés complémentaires.

La sémantique de chaque autre opérateur du langage d’expressions est aussi exprimée
par une fonction de flots. Par exemple, l’opérateur de délai initialisé fby est défini par

vi

une paire de fonctions, présentées en page 34. La première, fby, sélectionne la première
valeur présente du flot de gauche, tandis que les valeurs du flot de droite sont passées au
premier argument de fby1, et sont produites à la prochaine présence.

On note que cet opérateur est insensible aux absences, c’est-à-dire qu’en insérer et
supprimer dans les flots en entrée ne change pas les valeurs dans les flots en sortie. Nos
définitions de la sémantique des blocs de contrôle s’appuient sur cette observation. Le cas
du switch est le plus élémentaire. Une branche doit être insensible, dans le même sens
que pour les fby et les nœuds, quand l’expression de garde ne correspond pas à l’étiquette
de la branche. De plus, le switch doit combiner les flots produits par les branches,
en choisissant à chaque instant les valeurs de la branche désignée par l’expression de
garde. Ces intuitions sont concrétisées par la règle présentée en page 40. Elle réutilise
l’opérateur d’échantillonage when discuté plus tôt, mais l’applique à l’historique H pour
échantillonner l’ensemble des flots lus et écrits par les sous-blocs du switch.

De la même manière, la sémantique d’un bloc reset est spécifiée par un opérateur mask
appliqué à l’historique contraint par les sous-blocs. Finalement, les règles sémantiques
pour les machines à état hiérarchiques, présentées en page 49, suivent le même schéma, en
utilisant l’opérateur sémantique select, qui est essentiellement une combinaison de when et
mask. L’opérateur select est contrôlé par le flots d’états, qui indique à chaque cycle quel
état doit être actif, et s’il doit être réinitialisé. Le flot est défini par les transitions de l’état
actif à chaque cycle. Une particularité de notre présentation est que Vélus n’autorise
pas la définition de machines à états qui mélangent transitions faibles (until) et fortes
(unless). Cela simplifie la définition des règles sémantiques, du schéma de compilation,
et surtout évite certaines interactions dont la sémantique n’est pas claire.

Enfin, la sémantique de l’opérateur last est traitée en ajoutant les flots correspondants
à chaque last x directement dans l’historique. Ces flots sont contraints au niveau de
l’équation d’initialisation du last.

Analyse de dépendance vérifiée

Ce modèle sémantique relationnel n’est pas suffisant pour garantir certaines propriétés du
langage. Par exemple, l’équation x = x n’est pas déterministe : notre modèle sémantique
peut associer n’importe quel flot à x. A l’inverse, l’équation x = x + 1 n’admet pas de
sémantique, alors qu’elle est bien typée. De plus, ces équations ne peuvent pas être
compilées en un programme impératif où chaque valeur doit être calculée avant sa lecture.
C’est aussi le cas pour un système d’équations contenant un cycle, comme par exemple
x = y + 1; y = x * 2.

Un nœud contenant de telles équations est donc rejeté par Vélus au moyen d’une analyse
statique de dépendance. Cette analyse construit d’abord un graphe de dépendances des
variables du programme. Les sommets de ce graphe sont des étiquettes uniques associées à
chaque variable défini dans le programme. La fonction UsedInstΓ(e)[k] collecte l’ensemble
des étiquettes des variables utilisées pour définir le k-ième flot de l’expression e. Quelques
cas de la définition de UsedInst sont donnés en page 58. La fonction ne considère que
les variables utilisées instantanément, c’est-à-dire celles qui n’apparaissent pas à droite

vii

d’un fby. En revanche, la fonction considère que les flots produits par un appel de nœud
dépendent de toutes les entrées du nœud. C’est une contrainte forte, mais cohérente avec le
schéma de compilation utilisé dans Vélus, qui compile tout appel de nœud atomiquement.
La règle de dépendance pour les équations, présentée en page 59, spécifie que la k-ième
variable à gauche d’une équation dépend de toutes les variables utilisées instantanément
pour calculer le k-ième flot des expressions à droite. Les cas des blocs switch, reset, et
des machines à états introduisent des dépendances supplémentaires entre les conditions de
gardes et transitions et les variables définies par les sous blocs contrôlés par ces conditions.

Le graphe de dépendances construit selon ces règles est ensuite analysé par un
algorithme de détection de cycles basé sur la recherche en profondeur. Cet algorithme,
implémenté en Coq, est présenté en page 65. Le critère de récursion gardé de Coq, qui
impose que tout appel récursif soit fait sur un sous terme strict du paramètre de la
fonction, ne permet pas d’implémenter cet algorithme comme une fonction récursive.
Pour contourner ce problème, on utilise la commande Program Fixpoint, qui permet de
justifier de la terminaison de la fonction au moyen d’une mesure strictement décroissante
sur son paramètre. On veut ensuite raisonner sur la correction de cet algorithme, c’est
à dire prouver qu’un graphe accepté par l’algorithme est effectivement acyclique. Pour
cela, on propose une caractérisation inductive des graphes acyclique, AcyGraph, présentée
en page 64. La preuve est réalisée a priori, en encodant l’invariant d’induction dans les
types dépendants utilisés en entrée et sortie de l’algorithme.

Cette caractérisation des nœuds causaux, c’est à dire des nœuds pour lesquels le graphe
de dépendance ne contient pas de cycle, est ensuite utilisée pour prouver deux propriétés
fondamentales du modèle sémantique. La première est son déterminisme, spécifié par le
théorème de la page 73: l’exécution d’un nœud causal pour une entrée donnée produit
toujours la même sortie. La deuxième est la correction du système d’horloge, spécifiée
page 75. Cette propriété indique que les absences et les présences des flots du modèle
sémantique correspondent effectivement aux types d’horloges déclarés dans le programme.
Cette propriété est indispensable pour prouver la correction du schéma de compilation.

Compilation source à source des blocs de contrôle

Le compilateur Vélus est structuré comme une série de passes. La partie avant du
compilateur est présentée en page 79.

L’analyse syntaxique des programmes sources est implémentée par un programme
Coq généré par l’outil Menhir. L’arbre de syntaxe produit ne contient pas d’informations
de type. Celles-ci sont ajoutés par la passe d’élaboration, qui est implémentée dans Coq.
Cette passe ne peut pas être vérifiée, puisqu’il n’y a pas de modèle sémantique associé à
la syntaxe non typée.

Les passes suivantes réécrivent le programme dans le même arbre de syntaxe. Chaque
passe remplace l’une des constructions complexe du langage par une combinaison de
constructions plus simples, ou normalise la structure du programme. La première passe
complète les définitions partielles, comme celles vues dans le nœud drive_sequence, en
insérant des équations x = last x quand nécessaire. La transformation est implémentée

viii

comme une fonction Coq récursive sur les blocs d’un nœud. La preuve de correction
sémantique pour cette transformation, comme pour les suivantes, est établie par induction
sur la syntaxe du programme source, et analyse des cas induits par la fonction de
compilation. L’invariant inductif de correction présenté en page 94 est très simplifié par
rapport à l’invariant utilisé en Coq, qui doit garder la trace de différents critères statiques
sur le programme permettant de justifier de la correction de la compilation.

Les dépendances du programmes sont analysées après cette passe, ce qui permet
de ne pas à avoir à traiter les dépendances “implicites” qui seraient introduites par les
définitions partielles. Si l’analyse réussit, le résultat de correction du système d’horloge
est utilisé pour construire un modèle sémantique instrumenté. Ce modèle contient plus
d’informations sur les horloges des flots manipulés que le modèle de référence, ce qui est
utile pour établir les preuves de correction sémantique pour les passes suivantes.

La passe suivante compile les machines à états en combinaison de blocs switch et
reset, en suivant le schéma décrit dans [CPP05]. C’est aussi la première passe qui doit
ajouter de nouvelles variables locales dans le nœud. Nous traitons le problème de la
génération de noms frais dans un langage fonctionnel pure au moyen d’une approche semi-
axiomatisée, semi-monadique. La fonction de génération de base, gensym, est axiomatisée,
c’est à dire définie en OCaml plutôt qu’en Coq, ce qui lui permet de manipuler certaines
structures de données, comme les tables de noms, de manière impérative. L’injectivité
de la fonction est donnée comme un axiome, facilement vérifiable par inspection du
code OCaml. Ensuite, on développe une monade Fresh dont l’état gère les noms frais
générés. Dans les preuves de correction sémantiques, on raisonne à partir des propriétés
fondamentales de cette monade, telle que la non-duplication des noms dans l’état.

La passe suivante élimine les blocs switch en les transformant en combinaison
d’applications des opérateurs when sur les variables lues dans le switch, et merge sur
celles définies par le switch. La preuve de correction sémantique pour cette passe est plus
complexe que les deux précédentes, puisqu’elle doit connecter l’échantillonnage implicite
du switch avec l’échantillonnage explicite des opérateurs merge et when.

Les deux passes précédentes introduisent des blocs locaux imbriqués dans le nœud.
Cette passe les élimine pour se ramener à un programme ne contenant qu’un seul bloc de
déclaration locales, à la racine du nœud. Certaines variables doivent être renommées pour
éviter les duplications de noms. Renommer toutes les variables rendrait la traçabilité
du programme généré plus difficile. On introduit donc une monade Reuse qui renomme
les variables seulement quand nécessaire; elle réutilise certains composants de la monade
Fresh.

La passe suivante simplifie les expressions en séparant les opérateurs induisant un état
(fby, application de nœud) dans leur propres équations, et en distribuant les opérateurs
sur leurs sous-expressions.

Il y a deux manières de traiter l’opérateur last: la plus simple est de l’éliminer tôt
dans la compilation, en le remplaçant par une équation fby. Cependant, ce schéma mène
à une génération de code sous-optimal, comme illustré dans la page 93: les équations
implicites complétées “par défaut” génèrent des instructions de mise à jour inutiles. A la
place, on décide de conserver la construction last jusqu’à la génération de code impératif,

ix

où elle peut être compilée plus efficacement. On introduit tout de même une passe qui
normalise les équations manipulant les variables last, en particulier pour éliminer les
initialisations non constantes.

Enfin, les équations fby sont simplifiées de la même manière que les équations
concernant les variables last.

Adaptation des passes arrières du compilateur

L’architecture des passes arrières du compilateur est présentée en page 117. Elle est
adaptée de travaux précédents, en particulier décrits dans la thèse de Lélio Brun [Bru20].
Le compilateur produit un programme impératif dans le langage Obc, un petit langage
objet. Chaque nœud Lustre est traduit en une classe dont les variables d’états reflètent
celles du programme source, et avec deux méthodes: reset qui initialise ou réinitialise
l’état interne, et step qui réalise un pas d’exécution du nœud et met à jour l’état. Un
exemple de programme Obc compilé depuis le nœud drive-sequence est présenté en
page 119. Chaque switch du programme source, qui a été compilé en une combinaison
de when et merge, produit finalement un switch impératif. Plusieurs optimisations sont
appliquées à ce programme: les deux switchs sur la même condition sont fusionnés pour
limiter le nombre de branchements conditionnels dans le code généré. Les instructions de
mise à jour inutiles, de la forme state(x) := state(x), sont supprimées. Les langages
intermédiaires et schémas de compilation sont conçus pour rendre ces deux optimisations
les plus efficiente possible.

Le premier langage intermédiaire utilisé est NLustre, qui encode dans sa syntaxe la
forme des programmes Lustre normalisés, avec une différence importante: le langage
ne contient que des équations, alors qu’un programme Lustre normalisé peut toujours
contenir des blocs reset imbriqués. La passe de transcription doit donc “aplatir” ces blocs
en conditions de réinitialisation pour les équations NLustre générées. Dans les preuves,
cette transformation pose quelques difficultés à cause de la quantification universelle
utilisée dans la règle sémantique du reset. Pour compléter la preuve, nous devons utiliser
l’axiome du tiers-exclus, qui n’est habituellement pas admis dans la logique constructive
de Coq.

La simplicité du langage NLustre permet d’implémenter plusieurs passes d’optimisation
des programmes à flots de données. En particulier, on y implémente des optimisations
éliminant les inefficacités introduites pendant deux des passes avant du compilateur: la
compilation des switch et la normalisation des fby. Ces deux passes sont implémentées
naïvement, ce qui simplifie leurs preuves de correction. En revanche, la première peut
produire des variables inutilisées dans le nœud, et la second peut produire plusieurs
équations fby identiques. Au lieu de compliquer ces passes, on implémente, en NLustre,
deux optimisations qui éliminent ces deux inefficacités, et dont la correction est facilement
vérifiable.

Après ces optimisations, le programme NLustre est compilé dans le langage intermédi-
aire Stc, qui permet l’ordonnancement des équations du programme avant leur traduction
vers un programme impératif. En particulier, la syntaxe de Stc permet l’ordonnancement

x

indépendant des contraintes de réinitialisation et de mise à jour des variables d’état.
Pour traiter les variables last et les réinitialisations de variables d’état, on généralise les
règles de sémantique et d’ordonnancement du langage. On ajoute également une passe
permettant de couper les cycles entre mises à jour de variables d’état.

Enfin, le programme est traduit dans le langage Obc. La preuve de correction de
cette passe de traduction dépend du bon ordonnancement des contraintes du système Stc.
On doit également adapter l’optimisation de fusion de programmes Obc pour traiter les
variables d’états compilées depuis des variables last. En revanche, la passe de génération
de code C, et sa preuve de correction, ne demandent aucune modification.

Conclusion

Composer ces passes de compilation avec la fonction de compilation de CompCert produit
une fonction Coq qui transforme un programme Lustre en code assembleur. Cette fonction
est vérifiée de bout en bout. Elle est est extraite vers un programme OCaml, et combinée
avec la fonction d’analyse syntaxique et la fonction d’élaboration pour produire un
compilateur exécutable.

Nous avons testé ce compilateur sur quelques programme d’exemples pour calculer le
Temps d’Exécution en Pire Cas (ou Worst Case Execution Time, WCET) de la fonction
step principale pour chaque programme compilé. Nous avons comparé ces résultats avec
ceux du compilateur académique Heptagon, couplé à CompCert puis GCC, en page 171.
Dans tous les cas, Vélus est plus efficace qu’Heptagon et CompCert. En revanche, les
optimisations de GCC, même avec l’option -O1, produisent un code bien plus rapide que
celui produit par Vélus et CompCert.

Nous nous sommes aussi intéressé aux aspects pratiques de l’ingénierie de preuves
dans le cadre d’un compilateur réaliste comme Vélus. Pour cela, nous présentons, en
page 172, le nombre de lignes de code, le temps nécessaire à la compilation, et le temps
de travail nécessaire à l’implémentation de chacune des fonctionnalités du langage. Les
lignes de code sont classifiées en code exécutable, spécification, et preuve. Environ 6% de
la base de code de Vélus est exécutable, soit trois fois moins que dans CompCert. Cette
différence est expliquée, en partie, par les deux systèmes de types utilisés dans Vélus, et la
nécessité de prouver que chaque passe les préserve. Cela étant dit, la taille et complexité
du compilateur sont des facteurs qui pourraient ralentir et limiter de futurs extensions de
Vélus. Nous n’avons pas encore d’idée précise pour simplifier le développement, tout en
gardant un langage expressif et un schéma de compilation efficace.

Notre travail de mécanisation d’un langage existant dans un assistant de preuves a pu
rendre certains choix de conception et certaines difficultés d’implémentation plus explicites.
La quantité de travail nécessaire pour chaque modification nous a convaincu que travailler
dans un assistant de preuve n’est pas raisonnable pour prototyper un langage nouveau, et
devrait être réservé aux langages déjà bien compris et spécifiés.

Nous pensons que notre travail peut être utile dans un contexte industriel. Même
si il n’est pas réaliste de vérifier de bout en bout un compilateur industriel existant
(nous n’avons traité qu’un sous-ensemble de Scade), nous pouvons imaginer plusieurs

xi

manières d’intégrer un assistant de preuve dans le processus de développement et de
qualification. Définir la sémantique formelle du langage dans l’assistant de preuve
permet d’augmenter la confiance dans la conception du langage, et est utile à des fins de
documentation. Un interpréteur vérifié par rapport à cette sémantique pourrait être utilisé
pour tester le compilateur. Une passe de compilation particulièrement complexe pourrait
être implémenté et vérifiée dans l’assistant de preuves. Chacune de ces idées exploite
la formalisation mécanisée pour augmenter la confiance dans le compilateur, faciliter la
qualification du logiciel, et clarifier la conception du langage et du compilateur.

xii

Contents

1 Introduction 1
1.1 Context . 1

1.1.1 Synchronous Languages and Embedded Systems 1
1.1.2 Compiler Verification . 4

1.2 Programming with Vélus and State Machines 6
1.3 Overview of the Vélus Compiler . 10
1.4 Prototype Implementation . 13
1.5 Organization . 13

2 Extending Vélus with Control Blocks 17
2.1 Syntax of the Vélus source language . 17

2.1.1 Representation of the AST in the Coq Proof Assistant 19
2.2 Abstracting the CompCert Back End . 22
2.3 Representing Infinite Sequences . 23

2.3.1 Indexed Streams . 24
2.3.2 Coinductive Streams . 25

2.4 The Core Dataflow Semantics of Vélus . 27
2.4.1 Histories and Equations . 27
2.4.2 Sampling and Clock Typing . 30
2.4.3 Stateful Operators . 33
2.4.4 Node Instantiation . 35

2.5 Semantics of Switch . 39
2.5.1 Activation and Sampling . 39
2.5.2 Clock Typing of Switch Blocks . 41

2.6 Semantics of Reset . 41
2.6.1 Reset as Sampling . 42
2.6.2 Clock Typing of Reset . 44

2.7 Semantics of Local Declarations . 45
2.8 Semantics of Shared Variables . 46

xiii

Contents

2.9 Semantics of State Machines . 46
2.10 Partial Definitions . 50
2.11 Discussion and Related Work . 51

2.11.1 Mechanized Semantics for Verified Compilers 51
2.11.2 Possibly Finite Coinductive Streams 52
2.11.3 Synchronous Semantics for Dataflow Languages 53
2.11.4 Modeling the Semantics of State Machines 54

3 Verified Dependency Analysis 57
3.1 Dependency Graph of a Vélus Program 57

3.1.1 Analysis of Expressions . 58
3.1.2 Dependencies induced by blocks 59

3.2 Verified Graph Analysis . 63
3.3 Induction Schemes for Causal Programs 66

3.3.1 Induction on the labels of a node 67
3.3.2 Induction on the syntax of blocks and local declarations 69
3.3.3 Induction on the kth stream of an expression 71

3.4 Determinism of the Semantic Model . 73
3.5 Clock Correctness . 74
3.6 Discussion and Related Work . 76

3.6.1 Causality Type Systems for Dataflow Languages 76
3.6.2 Verified Graph Analysis . 78

4 Front-End Compilation 79
4.1 Parsing of Source Programs . 79
4.2 Generating Fresh Identifiers . 80

4.2.1 Gensym Axiomatization . 81
4.2.2 The Fresh Monad . 84

4.3 Elaboration of Lustre Programs . 86
4.3.1 Clock-Type Elaboration by Monadic Unification 87
4.3.2 Translation Validation of the Elaboration 90

4.4 Structure of the source-to-source rewriting passes 91
4.4.1 Normalized subset of the language 91
4.4.2 Implementation and Notations . 92

4.5 Completing Partial Definitions . 94
4.5.1 Compilation Function . 94
4.5.2 Correctness . 94

4.6 Dependency Analysis and Clocked Semantic Model 95
4.7 Compiling State Machines . 98

4.7.1 Compilation Function . 98
4.7.2 Correctness . 99

4.8 Compiling Switch Blocks . 100
4.8.1 Compilation Function . 100
4.8.2 Correctness . 100

xiv

Contents

4.9 Flattening Local Scopes . 102
4.9.1 Compilation Function . 102
4.9.2 Fresh identifiers and the Reuse monad 103
4.9.3 Correctness . 104

4.10 Unnesting and Distribution . 105
4.10.1 Compilation Function . 105
4.10.2 Correctness . 106

4.11 Normalization of shared variables . 106
4.11.1 Initializing lasts with constants . 107
4.11.2 Removing lasts on outputs . 108
4.11.3 Stateless definitions for lasts . 110

4.12 Normalization of fby equations . 112
4.12.1 Compilation Function . 112
4.12.2 Correctness . 113

4.13 Discussion and Related Works . 114
4.13.1 Translation validation of synchronous dataflow programs 114
4.13.2 Generating Fresh Identifiers . 115

5 Middle-End Compilation 117
5.1 The Obc target language . 118

5.1.1 Syntax of Obc . 118
5.1.2 A compiled example . 118
5.1.3 Semantics of Obc . 120
5.1.4 Optimizations . 121

5.2 NLustre: a normalized dataflow language 123
5.2.1 Semantic Models . 123
5.2.2 Transcription: From Lustre to NLustre 130
5.2.3 NLustre Optimizations . 134

5.3 Generalizing the Stc language . 143
5.3.1 Example and informal semantics 143
5.3.2 Syntax of Stc . 145
5.3.3 Formal semantics of Stc . 145
5.3.4 From NLustre to Stc . 148

5.4 Translation to imperative Obc code . 151
5.4.1 From Stc to Obc . 151
5.4.2 Scheduling of Stc Constraints . 153
5.4.3 Stc to Obc Correctness proof . 159
5.4.4 Changes to the Fusion Optimization in Obc 162

5.5 Discussion and Related Work . 166
5.5.1 Compilation to CompCert Clight and Beyond 166
5.5.2 Verified Compilation in CakeML 167
5.5.3 Translation Validation of Dataflow Programs 167

xv

Contents

6 Conclusion 169
6.1 Experimental Evaluation . 169
6.2 Proof Engineering and Practical Concerns 171
6.3 Open Questions . 174
6.4 Concluding Remarks . 175

A Type Systems and Static Predicates of Vélus 177
A.1 Node Invariants . 177

A.1.1 Variables Defined . 177
A.1.2 No Duplication in Declarations, No Shadowing 178
A.1.3 Shape of identifiers . 179

A.2 Type System . 179
A.3 Clock-Type System . 182

B Full Compilation of the Introductory Example 187

C A Semantic Preservation Proof 199

Bibliography 205

Index 215

xvi

Chapter 1

Introduction

Vélus [PLDI17; POPL20; EMSOFT21] is a mechanized formalization of a Synchronous
Dataflow Programming Language based on Lustre [Hal+91] and Scade [CPP17]. It
specifies the dynamic semantics and type systems of the language. It also includes a
compiler that produces imperative C code. Vélus is implemented in the Coq Proof
Assistant [Coq], which provides a specification language, a pure functional programming
language that we use to implement compilation algorithms, and a tactic language used
to build proofs. The compiler is implemented as a composition of functions that rewrite
the program into successive intermediate languages, each with their own fully-specified
semantic model. Each function is proven correct with regards to these models. The C
program produced by Vélus is then compiled to assembly code by CompCert [Ler09b], a
verified compiler also implemented in Coq. The resulting compilation chain comes with
an end-to-end proof that the generated code respects the semantics of the source program.

This thesis presents the extension of Vélus with control constructs inspired from
Lucid Synchrone [CHP06] and Scade 6 [CPP17]. We extend the synchronous semantics
of Vélus with a novel formalization for these constructs. We show that the traditional
source-to-source compilation scheme [CPP05] can be implemented and verified in an
Interactive Theorem Prover (ITP), and highlight where it needs to adapted. In particular,
we had to modify the middle-end of Vélus extensively to generate efficient imperative
code. We also prove some fundamental properties of this semantic model, using a novel
induction principle for well-formed programs.

1.1 Context

1.1.1 Synchronous Languages and Embedded Systems

Synchronous Programming Languages Synchronous programming [BB91] was first
proposed in the late 80s as a way of specifying and implementing real-time reactive
systems. The core of this approach is to abstract physical time into a discrete, logical time.
Programs execute cyclically by sampling their inputs, performing internal computations,
and writing their outputs. Communications between two programs happen synchronously

1

1. Introduction

half adder

a

b

s

c

full adder

half

adder

a

b

half

adderci

s

co

stream adder

full

adder

a

b

s

-1

0

Figure 1.1: Block-Diagram representation of a bit-stream adder

at each logical time step. This makes these communications atomic, which allows for
deterministic concurrency. For this abstraction to be valid, synchronous programs must
execute within a logical time step : they “produce their outputs synchronously with their
inputs, their reaction taking no observable time” [BB91]. This is the case, as long as the
physical time necessary to execute a cycle of a program is less than the physical length of
a logical time step. In particular, they must execute in bounded time.

In the late 80s, domain-specific languages that satisfy this constraint by construction
were introduced. Esterel [BC84; Tec05] is a procedural synchronous programming lan-
guage. Programs are specified as imperative commands, which can be composed in parallel,
or in sequence, and communicate using synchronous signals. Both SIGNAL [LeG+91;
GTL03], and Lustre [Cas+87; Hal+91] are synchronous dataflow languages, which were
originally designed to specify control and signal-processing applications. Dataflow pro-
grams specify relations between input and output streams of values. These programs can
be represented visually as block-diagrams, with blocks representing functions connected by
wires representing streams. Blocks may be abstracted and composed to specify complex
behaviors. These languages provide delay primitives to refer to the past values of streams.
For example, the first block in figure 1.1 represents half of a one-bit binary adder, built
from primitive xor and and operators. The second block composes two half-adders to form
a full one-bit adder with carry. Finally, the last block defines an adder on two streams of
bits starting with the least-significant bit. The carry bit is treated using an initialized
delay represented by the -1 block. These simple principles can be applied to build more
complex signal-processing functions. Finally, both of these languages support sampling:
some signals may be produced slower than the base rate of the system. A boolean clock
is associated to each signal, indicating whether or not the signal is produced at each
cycle. In the case of Lustre, a static clock-type system [CP03] is used to ensure sampling
operators are used correctly. This clock-typing discipline allows for the generation of
efficient imperative code [Bie+08].

Specifying Reactive Systems with State Machines Over the last 30 years, many
research projects have aimed at extending and combining ideas from these foundations, as
well as ideas from other programming languages. In this dissertation, we are particularly
interested in projects that aim to extend dataflow-synchronous languages with block-based

2

1.1. Context

Chrono

Rst

(in Stop)

Stop

Start

H∗

StSt

H∗

StSt

Time

Lap

Rst
Rst

(in Start)

Figure 1.2: Statechart for a simple stopwatch

control constructs. We now provide a brief summary of the most relevant related works.
In [Har87], Harel proposes Statecharts, “A visual formalism for complex systems”.

Figure 1.2 presents an example of a statechart, for a simple stopwatch. External events,
like pressing a button, trigger transitions that change the active state. In the example,
pressing button StSt while in state Stop changes the active state to Start. A transition
may also depend on the internal state of the system: for instance, the Rst transition
that reenters state Chrono checks if the state is Stop. The example shows a parallel
composition of two state machines: the behavior of the internal chronometer (at left), is
separated from the behavior of the screen (at right). It also shows the refinement of a
state: the Chrono machine contains two sub-states, Stop and Start.

Several projects have focused on combining the features from Statecharts with the
synchronous dataflow model of Lustre. SyncCharts [And95] mixes the ideas from Stat-
echarts with the operators of Esterel. The Mode-Automata language [MR98] embeds
equations written in a subset of the Lustre language (without explicit sampling) inside
each state of an automaton.

Lucid Synchrone is a synchronous dataflow language based on Lustre, extended with
ML-like functional programming [Pou06]. In [CPP05], the authors extend Lucid Synchrone
to support state machines and other control blocks. These features are then compiled away
into more primitive dataflow operations already present in Lustre and Lucid Synchrone.

Industrial Uses Based on these academic efforts, synchronous programming has
attracted industrial interest in the domain of safety-critical embedded software. Scade
Suite is a development environment for embedded software based on a synchronous
dataflow language, Scade 6 [CPP17]. Among other features, this language includes
hierarchical state machines, similar to the ones present in Lucid Synchrone. Scade Suite
comes with a code generator, KCG, that produces imperative code from Scade 6 programs.

3

1. Introduction

This code generator is qualified : its development is guided by a strict specification of the
input language, and of the code transformations. The correctness of this specification,
and the correspondence of the actual implementation to its specification are supported
by extensive reviews and testing. This qualification means the compiler can be used to
generate code for safety-critical applications.

The Vélus project aims at formalizing features of Scade 6 in the Coq Proof Assistant.
Earlier works [EMSOFT21] proposed a specification for a pure dataflow Lustre-like subset
of Scade 6. The main contribution of this thesis is to extend Vélus to support state
machines and other control blocks inspired from Lucid Synchrone and Scade 6.

1.1.2 Compiler Verification

Safety-critical controllers for embedded systems are designed following strict method-
ologies. Usually, engineers first write a formal specification of the system. The actual
implementation then follows this specification closely. The correspondence of the imple-
mentation with the design is checked by reviewing and testing the code, and by formal
methods. Dataflow synchronous languages are designed to be syntactically close to the
specification. This makes the features of the specification more easily traceable in the
implementation, and reduces the risk of a disagreement between the two. However, this
also means that the actual running code may differ significantly from the specification,
since it is automatically generated by a compiler. It is crucial to check that the compiler
does not introduce any discrepancy in the behavior of the generated code.

More generally, compilers are complex and error-prone programs. In [Yan+11], the
authors use randomly-generated programs to test 11 different C compilers and check for
differences in the behavior of the generated code. It was found that all but one compilers
exhibited errors during their middle-end, optimizing passes. The one compiler that didn’t
introduce any error during optimization was CompCert [Ler09b], where these passes are
verified in the Coq Proof Assistant.

But what does it mean for a compiler to be verified? In [Ler09b], the author of
CompCert states it as follows. Suppose a compiler that, given a source program in
language L1 produces a program in language L2. The behavior, or semantics of both
of these language must be formally specified. We note P ⇓ B for “program P has
behavior B”. For a low level language, like assembly, the formalized semantics should
correspond to its execution. For a higher level language, it should correspond to the
specification of the language. Informally, we expect that the compiler being correct means
that “for any source program P , the program produced by the compiler has the same
behavior as P ”. If we model a compiler by a (possibly partial) compile function, this
could be formally expressed by: ∀P, P ⇓ B ⇐⇒ compile(P) ⇓ B. Unfortunately, this
equivalence is too strong in practice. For instance, the source program’s behavior may
not be defined because of an operation that is then compiled away. In this case, it would
be impossible to prove the right-to-left implication. We can express a weaker correctness
lemma: ∀P, P ⇓ B =⇒ compile(P) ⇓ B, which expresses that, for any program P with
defined behavior B, the compiled program also has behavior B.

4

1.1. Context

There are several approaches to showing that this property holds for a given compile
function. We now discuss the most common.

Verified compilation consists in verifying a compile function directly, by analysis of
its definition. The proof usually proceeds by induction on the structure of the input
program P , or on the derivation of the semantic judgment P ⇓ B. This approach can be
tedious, because of the complexity of compilation functions, but proof assistants often
provide automation, and at the very least check that no case was forgotten. The main
advantage of this approach is that, like a pen-and-paper proof, it requires understanding
and explaining in every detail the reasoning that imply that the compile function is
actually correct. Moreover, any existing error in the compile function will eventually be
uncovered by unsuccessful effort at proving a false statement.

Translation validation consists in treating the compile function as a black box,
but providing a validate function that checks that the input and output of compile
are equivalent [PSS98b]. This function is formally verified by a theorem of the form:
∀P, P ⇓ B ∧ validate(P, compile(P)) = true =⇒ compile(P) ⇓ B. In other words, if the
input and output programs are equivalent in the sense checked by validate, then they do
have the same behavior. This approach is particularly useful when validate is simpler to
verify than compile would be; this is particularly the case when compile involves complex
data structures or heuristics. If validate cannot verify that the input and output programs
are indeed equivalent, then the whole compiler stops, never allowing incorrect code to
be produced. If this happens, it either means that there is a bug in compile, or that the
validate function is too strict.

Proof-carrying Code is a more general approach than translation validation, where
the compile function is instrumented to provide a certificate C of an expected property
of the generated program : compile(P) = (P ′, C). This certificate may then be checked
efficiently and independently [Nec97; App03]. In the context of verified compilation, the
property of interest would be the semantic correspondence of P ′ and P . As with the
translation validation approach, the certificate checker is verified: if check(P, P ′, C) = true,
then the semantics of P ′ corresponds to that of P . If, for any program, check returns
false, it means that either there is a bug in the compiler algorithm or certificate generator,
or that the check function is too strict.

In a given verified compiler, several of these techniques may be combined to verify
different compilation passes. For instance, most of CompCert’s passes are verified directly,
but the register allocation pass, which involves a complex graph coloring algorithm, uses
translation validation [RL10].

Proof Assistants have been used to verify other ambitious compilers. CakeML [Kum+14]
is a compiler for a subset of Standard ML implemented in Higher Order Logic (HOL). Its
verified back-end [Tan+16] produces machine code and uses a mix of direct verification
and translation validation. One of its front-ends [Abr+20] uses the proof-carrying code

5

1. Introduction

A+

A-

B-

B+

N

S

A+

A-

B+

B-

Figure 1.3: Stepper motor and its clock-wise drive sequence

approach to translate monadic HOL terms into the CakeML Abstract Syntax Tree (AST),
along with a proof of semantic correspondence. CertiCoq [Ana+17] is a verified compiler
for Coq’s programming language, Gallina, targeting CompCert C. Other efforts have fo-
cused on formalizing the Java programming language, including a verified compiler [Str02]
implemented in Isabelle [Pau08].

The languages treated by these compilers, even if they follow different paradigms
(imperative, functional, object-oriented), are all procedural. Verifying the compilation of
a declarative, synchronous language poses different issues. First, the semantic model for
dataflow language may be very different from that of a procedural language. Second, the
compilation algorithms from declarative to imperative programs involve different passes
and optimizations than that of a compiler for a procedural source language. For instance,
the Esterel language admits several semantic model, which have been proven equivalent
in Coq [RB22]. This work also describes the proof of correctness for the compilation
of Esterel into circuits with regard to these models. Some verified compilers for such
languages have turned to the translation validation approach. [PSS98a] uses it to verify
the compilation of an intermediate transition-system language to imperative C code. The
thesis of Auger [Aug13] implements the normalization of a Lustre-like language using this
approach. The verified compiler presented in [Shi+17; Shi+19] uses direct verification for
some of its passes. Its semantic model is however closer to that of an imperative language
than the ones usually used for Lustre-like languages.

In the Vélus compiler, all passes are verified directly, except for scheduling, which
uses translation validation. In this dissertation, we will outline the main invariants of
these direct proofs of correctness, and summarize the central proof steps.

1.2 Programming with Vélus and State Machines

Dataflow-synchronous language, like Vélus, can be used to specify the behavior of
embedded systems. In this section, we introduce our language, and in particular the
constructions added in this thesis, through the example of a simple embedded system: a
stepper motor. The inside of a stepper motor is sketched in figure 1.3. The central rotor

6

1.2. Programming with Vélus and State Machines

pause

mA

mB

ena

Figure 1.4: Example behavior of the stepper motor

node count_up(inc : int)
returns (o : int)
let
o = (0 fby o) + inc;

tel

inc 50 50 50 50 50 50 50 . . .
o 50 100 150 200 250 300 350 . . .

Figure 1.5: Measuring the duration of a phase

is made from a magnet, and turns within a fixed stator. The stator has two windings,
labelled A and B on the figure. Passing current through a winding creates a magnetic
field that acts on the rotor. Energizing the windings with the sequence of phases A+/B+,
A-/B+, A-/B-, A+/B- moves the rotor clockwise from the upper-right in 90° steps. We will
call this basic behavior the drive sequence, illustrated in figure 1.3, at right.

An example trace of the control signals is presented in figure 1.4. The enable signal
ena indicates if electrical current is sent to the motor. The mA (respectively mB) boolean
signal indicates, if ena is true, whether current is sent to pole A+ or A- (respectively
B+ and B-). The speed of the motor depends on the length of a phase, delimited by
step signals, which are denoted by a dashed vertical line. Note that the first phase is
longer, to allow the rotor to gain momentum. Additionally, the rotation of the motor may
be paused, when the pause signal is true. During the pause, the rotor must be held in
place. This means staying in the same phase and not issuing any step signal before the
pause ends. If the pause ends before the end of the current phase, like the first one in the
chronogram, this does not have any effect. If it exceeds it, the electrical current sent to
the windings must be reduced to avoid physical damage. This is done by modulating the
ena signal. Finally, if the pause lasts for too long, the next phase after the pause should,
again, be longer, in order for the rotor to regain momentum.

Basic dataflow We now specify a program that generates control signals for this motor
as a Vélus program. We first present a simple function that counts upward from zero by
a given increment. We will later instantiate it to measure the duration of a motor phase.
The definition and an example trace are shown in figure 1.5. This node, called count_up,
maps an input stream inc to an output stream o. Its body contains a single equation
that defines o as zero followed by (fby) the pointwise addition of itself and inc.

7

1. Introduction

node drive_sequence(step : bool)
returns (mA, mB : bool)
let
last mA = true; last mB = true;
switch step
| true do
(mA, mB) = (not (last mB), last mA)

| false do
(mA, mB) = (last mA, last mB)

end;
tel

step F F T F F T F . . .
mA T T F F F F F . . .
mB T T T T T F F . . .

Figure 1.6: Generating the drive sequence

Switch blocks and shared variables We now describe how the three digital signals
mA, mB and ena controlling the motor are produced. Assume for now that the motor is not
paused, and thus that ena = true. To generate the sequence of phases described above,
the drive_sequence node in figure 1.6 alternates the values of mA and mB every time its
input step is true. A sample execution of the node is presented on the right. In this
dissertation, we will abbreviate true and false as respectively T and F. The body of this
node contains a switch block: the value of step determines, at each cycle, which set of
equations is active and defines the output signals.

It is tempting to put (mA, mB) = (true, true) fby (not mB, mA) in the true branch,
but this fby would not allow us to refer to the previous values of these streams calculated
in the false branch. Instead we use shared variables [CPP05, §3.2] by declaring mA and mB
with initial last values and writing last mA and last mB to access their previous values.
The overall effect is to advance to the next phase when step is true and to otherwise hold
the current phase.

Omitting the body of the false branch, shown in grey, yields an equivalent program.
Indeed, the semantics and compiler complete partial definitions for variables declared
with initial last values. This allows the user to define programs in a more imperative
style, with state variables that are only updated when explicitly defined.

While the drive_sequence node uses a boolean condition, Vélus supports general
enumerated types1. The boolean type is defined as an enumerated type with two
constructors, true and false.

Reset blocks The duration of each phase and the value of ena are controlled by the
feed_pause node presented in figure 1.7. We will detail the state-based logic of this node
shortly. For now, we focus on its first three lines. They define a local variable time using
the count_up node defined earlier. This node is instantiated with an increment of 50.
The counter is reset after each phase change, that is, when step was true in the previous
instant. Since the value of time is itself needed to determine that of step, the delay

1Thanks to the work of Lélio Brun

8

1.2. Programming with Vélus and State Machines

node feed_pause(pause : bool) returns (ena, step : bool)
var time : int;
let
reset
time = count_up(50);

every (false fby step);

automaton initially Feeding

end
tel

state Feeding do
ena = true;
automaton initially Starting

end;
unless pause then Holding

state Starting do
step = true -> false;

unless false -> time >= 750 then Moving

state Moving do
step = true -> false;

unless time >= 500 then Moving

state Holding do
step = false;
automaton initially Waiting

end;
unless
| not pause and time >= 750 then Feeding
| not pause continue Feeding

state Waiting do
ena = true;

unless time >= 500 then Modulating

state Modulating do
ena = pwm(50, 50);

H∗

Figure 1.7: Controlling the steps

introduced by fby is necessary to avoid an instantaneous dependency cycle between step
and time.

State Machines The behavior described above is specified by the automaton of
figure 1.7. We have superimposed a graphical notation on top of the Lustre code to
outline the control behavior. The automaton has two states: the initial Feeding state, at
left, and Holding, at right. Transitions are listed below states after the unless keyword.
When Feeding is active, ena is always true and a nested automaton defines the duration of
each phase. As described, the first phase after a long pause should be longer as the rotor
(re)gains momentum. Both inner states define the value of step with the initialization
operator (->). This way, step is only true in the instant a state is entered. When the
pause input is true, the automaton enters the Holding state. Here, step is always false,
and the value of ena is defined by a nested automaton. If the current phase duration
exceeds 500, the inner automaton enters the Modulating state, where ena is defined by
Pulse-Width-Modulation (PWM) using the pwm node (not shown). The inputs of pwm
specify the on and off periods of the generated PWM signal. The Holding state has two
outgoing transitions. Both of them fire only if the pause input becomes false, and return
to the Feeding state. If the last phase duration exceeds 750, then the rotor will have lost
momentum. In this case, the first transition specifies that the Feeding state must be
entered “with reset”. This means, in particular, that the internal state machine inside
Feeding is reset, and that the Starting state will then be entered again. If the phase
duration is less than 750, the continue keyword of the second transition specifies that

9

1. Introduction

state Counting do
time = count_up(50);

until step then Counting

Figure 1.8: Replacing reset with a state machine with weak transitions

the state must be entered “with history” [Har87]. The internal state machine will not be
reset, and will continue executing in the state it was in before pause became true.

All transitions in figure 1.7 are marked as strong by the unless keyword [Pou06,
§1.6.1]. A strong transition aborts a state immediately, specifying a state to enter in
the same instant. Figure 1.8 defines time using the until keyword to specify a weak
transition [Pou06, §1.6.2]. A weak transition exits a state after it has been active,
specifying a state to enter at the next instant. This definition is equivalent to the one
given with a reset block in figure 1.7, because the transition is done “with reset”, which
happens in the next cycle after step equals true. For this state machine, it is necessary
to use a weak transition rather than a strong one to avoid an instantaneous dependency
cycle between step and time.

1.3 Overview of the Vélus Compiler

The work described in this thesis has been implemented by extending the Vélus compiler.
We first recall the structure of the existing compiler.

Compilation Chain The architecture of Vélus is presented in figure 1.9. Each block
in the chain represents a different intermediate language, with a dedicated AST. The
compilation chain starts with a parser, implemented using the Menhir parser generator for
Coq [PR16; JPL12]. The produced term is untyped. The elaboration pass adds type and
clock-type annotations to each expression in the program. It may fail if the program is not
well formed. A final analysis checks that the program does not contain dependency cycles
in its definitions, which would make the program impossible to compile. The elaborated
Lustre term is then successively simplified by a series of source-to-source rewritings.
Each of these passes aims at replacing a more complex construct of the language with a
composition of simpler ones. Once the term is sufficiently simplified, it is transcribed into
the Normalized Lustre (NLustre) AST. A first series of optimizations is applied. These
are the optimizations that are most practical to specify for dataflow languages. Applying
them on NLustre means we can take advantage of its restricted syntax to reduce the
number of cases both in the algorithms and their proofs of correctness. The program
is then translated into the Synchronous Transition Code (Stc) language. This language
was specifically designed to facilitate scheduling [POPL20; Bru20]. Once the program
is scheduled, it is translated into an imperative Object Code Language (Obc) program.
Optimizations that are only possible or easier to specify for imperative programs are

10

1.3. Overview of the Vélus Compiler

Untyped
Lustre

Lustre NLustre

Stc

Assembly Clight Obc

parsing elaboration transcription

i-translation

s-translation

generationcompilationprinting

source-to-source rewriting

dataflow
optimizations

scheduling

imperative
optimizations

CompCert

dataflow

transition systems

imperative

Figure 1.9: The architecture of Vélus

then applied. Finally, Vélus generates a program in Clight, the input language of the
CompCert compiler, which then produces assembly code for a specified hardware target.

The intermediate languages of Vélus can be classified into three categories. Lustre
and its untyped and normalized forms are dataflow languages, where the semantics are
specified as relations over infinite streams. Stc is a transition system, where at each cycle,
a transition function is applied to transform the internal state of the system. Finally,
Obc and the languages used in CompCert have more typical imperative semantic models.

Compiler Correctness Verifying that this compilation chain is correct means proving
that, for any Lustre program G compiled to an assembly program P , the behavior of
P “corresponds” to the behavior of G. However, as discussed, the semantic model of
assembly in CompCert is very different from that of the source Lustre language. The
former describes a step-by-step execution, while the latter is defined as a set of relations
over infinite streams. To relate these semantic models, we use the notion of “trace” defined
in CompCert. A trace consists in a possibly infinite sequence of observable events, that is,
interactions of the program with the outside world. Two of these events are the volatile
load (VLoad) and store (VStore), that read from and write to a volatile variable. We
use these events to model the relation between dataflow and imperative programs, as
presented in theorem 1. If the main node f of program G associates input streams xs to
output streams ys, then we expect that the assembly program P generates an infinite
trace perpetually reading the expected inputs of the node and writing the corresponding
outputs.

11

1. Introduction

Theorem 1 (Compiler Correctness VelusCorrectness.v:223)

if G ⊢ f(xs) ⇓ ys

and compile G f = OK P

then ∃T, P ⇓ T ∧ T ∼ ⟨VLoad(xs(n)).VStore(ys(n))⟩∞n=0

Theorem behavior_asm:
∀ D G Gp P main ins outs ,

elab_declarations D = OK (exist _ G Gp) ->
lustre_to_asm (Some main) G = OK P ->
wt_ins G main ins ->
wc_ins G main ins ->
sem_node G main ins outs ->
∃ T, program_behaves (Asm.semantics P) (Reacts T)

/\ bisim_IO G main ins outs T.

Listing 1.1: Compiler Correctness Theorem VelusCorrectness.v:223

The mechanization of this theorem, as used in Vélus, is presented in listing 1.1. This
statement has a few differences and restrictions compared with the ideal pen-and-paper
theorem.

1. The compile function is split into two functions: elab_declarations which imple-
ments the elaboration pass, and lustre_to_asm, which implements the rest of the
compilation chain. This is because there is no semantic model associated to untyped
terms before the elaboration. The semantic judgment sem_node G main ins outs
refers to the elaborated term G. This means that only the correctness of function
lustre_to_asm is ensured by this theorem.

2. The parameter main indicates the name of the main node. It is passed as an option
to the compilation function. If None is passed, it means the program should be
compiled “as a library” without generating an input-output C function. In that case,
the correctness theorem does not apply.

3. We require that the inputs streams of the node respect the declared types and clock
types of the node. For instance, if a floating-point number is passed to a boolean
input, the behavior of the compiled program is unspecified.

4. The bisim_IO relation implements the ∼ operator used in the above theorem. Its
specification depends on the names of inputs and outputs of the main node, as they
correspond to the names of the volatile variables being read and written.

The lemmas and invariants presented in the rest of this dissertation will also be
simplified, compared to the Coq version. We do this to avoid overwhelming the reader
with the numerous details inherent to the mechanized proof of a realistic compiler. We
instead focus on what we think is the meaningful core of these proofs. The other details
are available in our Coq artifact and its documentation, as described below.

12

https://velus.inria.fr/phd-pesin/velusdoc/Velus.VelusCorrectness.html#behavior_asm
https://velus.inria.fr/phd-pesin/velusdoc/Velus.VelusCorrectness.html#behavior_asm

1.4. Prototype Implementation

1.4 Prototype Implementation

The source code of the Vélus compiler is available at:

https://github.com/INRIA/velus

Every definition or theorem stated in this document is presented with a cross reference
to this mechanization, signalled by . If this document is read as a PDF, the cross
references are clickable links to the online documentation of Vélus.

An online, interactive version of the compiler is available at:

https://velus.inria.fr/phd-pesin/try-velus/

It is built from the Coq sources of the compiler, extracted to OCaml and compiled to
JavaScript using Js_of_ocaml [VB14]. It includes a verified interpreter for the Obc
intermediate language, which allows for programs to be simulated.

1.5 Organization

The following chapters describe the choices we have made in implementing the new con-
structs presented in this introduction in the context of the Vélus compiler. After having
presented these choices formally, each chapter discusses them in relation with related work.

Chapter 2 presents the formalization of the Vélus front-end language. The new definitions
for control blocks are presented as a conservative extension of the existing formalization
of Lustre. The chapter presents the abstract syntax of the language, details its dynamic
semantics, and describes the important points of its clock-type system. Along with the
typeset definitions, it gives a taste of their mechanization in the Coq Proof Assistant.

Chapter 3 discusses the verified dependency analysis used in Vélus. It describes the imple-
mentation and verification of a graph analysis in Coq. It shows how to build an induction
principle for programs that do not contain dependency cycles. This principle is applied
to prove two central properties of the semantic models: determinism and clock correctness.

Chapter 4 focuses on the front-end of the Vélus compiler. It shows how state machines,
switch blocks, and nested local scopes are successively translated into a smaller subset
of the language. For each translation pass, it discusses the main difficulty in the associ-
ated correctness proof, and presents a simplification of the invariant used in the Coq proof.

Chapter 5 examines the middle-end of the Vélus compiler. It gives a brief presentation
of each of the intermediate languages, and details the changes that were necessary to
support the compilation of the new constructions. It especially focuses on the efficient
compilation of nested reset blocks and last variables. Finally, it outlines the relation
between the semantic models of each of the intermediate languages, and the main ideas
behind the proofs of correctness of compilation passes.

13

https://github.com/INRIA/velus
https://velus.inria.fr/phd-pesin/try-velus/

1.5. Organization

Related Publications

[JFLA21] Bourke, Jeanmaire, Pesin, and Pouzet,
“Normalisation vérifiée du langage Lustre”,
at Journées Francophones des Langages Applicatifs 2021.
This work describes the normalization passes that transforms a Lustre
program into its restricted form, NLustre. Each of the three successive
passes is described, along with its correctness proof.

[EMSOFT21] Bourke, Jeanmaire, Pesin, and Pouzet,
“Verified Lustre Normalization with Node Subsampling”,
at International Conference on Embedded Software 2021.
This work details the semantics of the Vélus core dataflow language. It
discusses the normalization pass, and why the clock correctness property
is integral to proving its correctness.

[JFLA23] Bourke, Pesin, and Pouzet,
“Analyse de dépendance vérifiée pour un langage synchrone à flot de
données”,
at Journées Francophones des Langages Applicatifs 2023.
This work presents a first version of the semantics of switch and local
blocks. It details the dependency analysis of Vélus of these constructions.
Finally, it describes the proof of semantics determinism.

[EMSOFT23] Bourke, Pesin, and Pouzet,
“Verified Compilation of Synchronous Dataflow with State Machines”,
at International Conference on Embedded Software 2023.
This work details the semantics of the extended Vélus language with local
blocks, switch and reset blocks, and hierarchical state machines. It
explains the compilation passes for each of these constructs, and gives a
taste of their correctness proof.

15

Chapter 2

Extending Vélus with
Control Blocks

In this second chapter, we present the source language of the Vélus compiler. We first
introduce the extended syntax of the Vélus language. We then present some central
Coq definitions used in our mechanization, in particular regarding the representation of
infinite streams. section 2.4 recalls the relational synchronous semantics for the dataflow
core of the language, as introduced in [Bru20; POPL20]. The following sections then
demonstrate how this semantic model can be extended to support the high-level control
blocks introduced in the previous chapter. The last section of the chapter discusses and
compares our design choices with the related work.

2.1 Syntax of the Vélus source language

The syntax of the Vélus language is presented in figure 2.1. In addition to the native
constants already present in [Bru20; POPL20], the language handles enumerated constants,
thanks to the work of Lélio Brun. Expressions can refer to the current, or the last
value of a variable. The unary and binary arithmetic and logic operators are the same
as in CompCert C. The fby operator induces a delay by taking an initial value from
its left operand, followed-by the previous value of its right operand. The initialization
arrow (->) takes the value from its left operand only at the first cycle, but does not
induce a delay. A when is used to sample a stream when its condition is equal to a fixed
enumerated constant. The opposite operator is merge, which combines complementary
sampled streams into a faster one. A condition variable is used to control which of the
branches of the merge should be chosen. The correct use of when and merge is ensured
by a static “clock-type” system that we will detail later. The case operator generalizes
the if/then/else construct for enumerated types. Contrary to the merge, all branches
of the case must be active at the same time. Finally, an expression may instantiate a
node, and the internal state of the instantiated node may be reset on a boolean signal.

Some of these operators (fby, ->, when, merge and case) are applied to lists of

17

2. Extending Vélus with Control Blocks

e ::= c | C | x | last x | ⋄ e | e ⊕ e
| e+ fby e+ | e+ -> e+

| e+ when C (x) | merge x (C => e+)+

| case e of (C => e+)+

| f (e+) | (reset f every e) (e+)

nodedecl ::= node f (var+) returns (var+) blk

blk ::= x+ = e+

| var var * let blk+ tel
| switch e (C do blk+)+ end
| last x = e
| reset blk+ every e
| automaton initially autinits (state C autscope)+ end
| automaton initially C (state C do blk+ unless trans+)+ end

autinits ::= C | if e then C else autinits

autscope ::= var var * do blk+ until trans+

trans ::= if e continue C | if e then C

var ::= x : ty on ck

typedecl ::= type tx = C +

G ::= typedecl * nodedecl+

Figure 2.1: Abstract Syntax of the Vélus Language

expressions. This allows, for instance, to write the expression (0, 0) fby f(x), where f
has two outputs, and means that each expression produces a list of streams. While this
complicates some of the definitions, algorithms and proofs, we want to provide a language
with as few arbitrary restrictions as possible.

A node takes a non-empty list of inputs, and produces a non-empty list of outputs.
The values of the outputs are defined in the encapsulated block. In the original language,
a block blk could only contain equations x+ = e+ , which define the values of the variables
at left to be the ones of the expressions at right. This work enriches the block structure
with the following constructions. Blocks of local declarations may be arbitrarily nested.
The switch block controls the activation of its branches according to the enumerated
value of its condition, as was shown in the drive_sequence example of the introduction.
For each variable on which last is used, an initialization equation last x = e must be
provided. The modular reset operator is generalized to support resetting the state of any
block. The state machines, denoted by the automaton keyword, allow for the definition of
complex modal behaviors, such as the one of the feed_pause node in the introduction.
They support both weak (until) and strong (unless) transitions. We discuss later why

18

2.1. Syntax of the Vélus source language

the two type of transitions cannot be mixed in our language. Transitions trans of either
types are formed with a condition, a state to transition to, and either the keyword then
or continue, indicating whether or not the entered state should be reset on entry. The
order of the transitions in a state determines which one should be followed if multiple
conditions are true at the same time. For state machines with weak transitions, the initial
state is specified by a list of boolean conditions autinits. Moreover, for state machines
with weak transitions, each state may declare local variables which may be used in the
conditions of the transitions.

Finally, a program consists in a list of enumerated type declarations, followed by a
non-empty list of node declarations.

2.1.1 Representation of the AST in the Coq Proof Assistant

The abstract syntax of the Vélus language is represented in Coq using the Inductive data-
types presented below. We now discuss the major differences between the pen-and-paper
definitions presented in the previous section and these mechanized ones.

Most expressions in the exp type have static type and clock-type annotations. Clock-
types are represented using the inductive clock type, which is either the base clock Cbase
or a sampled clock Con. Annotations of type ann are used to indicate the type and clock
type of each stream generated by an expression. Annotations of type lann are used when
all streams generated by an expression have the same clock type, but not necessarily
the same type. These annotations are added during Elaboration. Functions typeof and
clockof return the types and clock types associated with an expression by reading these
annotations. These annotations also appear in the Coq predicates formalizing the type
and clock-type systems described in appendix A. Finally, they are used as witnesses for a
simple and efficient decision procedure checking if a program is indeed well typed.

In both CompCert and Vélus, identifiers of type ident are represented by strictly
positive numbers in a binary representation. The inductive type definition from the Coq
Standard Library is presented in listing 2.2. Constructor xH represents the number 1.
Using constructor xI (respectively xO) adds 1 (respectively 0) as the new least significant
bit of the number. For instance, (xI (xO (xI xH))) represents the binary number 1101,
that is the decimal number 13. This representation is relatively space efficient, compared
to the traditional Peano encoding of natural numbers. Moreover, it allows for a trivial
definition of tries data structures as binary trees. This definition is used to give an efficient
functional implementation of sets of positives and associative maps with positives as keys.

Constructors for enumerated types are represented by the enumtag type, which is
simply nat, the type of natural numbers. For a type declaration type t = C0 | ... | Cn,
constructor C0 is represented by the natural 0, and Cn by the natural n.

Both the branch and scope inductive types are used in the definition of block. A
branch represents one of the mutually-exclusive cases of a control block. It can represent
one of the cases of a switch or one of the states of an automaton. A scope encapsulates
local stream definitions. It can appear directly in a block or within the branch of a state
machine. In the latter case, the weak transitions of the state machine appear within
the scope, so they can refer to definitions local to the branch. Both of these inductives

19

2. Extending Vélus with Control Blocks

Definition enumtag : Type := nat.
Inductive clock : Type :=
| Cbase : clock
| Con : clock -> ident -> type * enumtag -> clock.
Definition ann : Type := (type * clock).
Definition lann : Type := (list type * clock).

Inductive exp : Type :=
| Econst : cconst -> exp
| Eenum : enumtag -> type -> exp
| Evar : ident -> ann -> exp
| Elast : ident -> ann -> exp
| Eunop : unop -> exp -> ann -> exp
| Ebinop : binop -> exp -> exp -> ann -> exp
| Efby : list exp -> list exp -> list ann -> exp
| Earrow : list exp -> list exp -> list ann -> exp
| Ewhen : list exp -> (ident * type) -> enumtag -> lann -> exp
| Emerge : ident * type -> list (enumtag * list exp) -> lann -> exp
| Ecase : exp -> list (enumtag * list exp) -> lann -> exp
| Eapp : ident -> list exp -> list exp -> list ann -> exp.

Inductive branch A := Branch : list (ident * ident) -> A -> branch A.

Definition decl : Type := ident * (type * clock * ident * option ident).
Inductive scope A := Scope : list decl -> A -> scope A.

Inductive auto_type := Weak | Strong.
Definition transition : Type := exp * (enumtag * bool).

Inductive block : Type :=
| Beq : list ident -> list exp -> block
| Blast: ident -> exp -> block
| Breset : list block -> exp -> block
| Bswitch : exp -> list (enumtag * branch (list block)) -> block
| Bauto :

auto_type ->
clock ->
list (exp * enumtag) * enumtag ->
list (enumtag *

branch (list transition * scope (list block * list transition))) ->
block

| Blocal : scope (list block) -> block.

Record node : Type := mk_node {
n_name : ident;
n_in : list (ident * (type * clock * ident));
n_out : list decl;
n_block : block;
[...]

}.

Listing 2.1: The Vélus Abstract Syntax Tree Lustre/LSyntax.v:46

20

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSyntax.html#LSYNTAX.exp

2.1. Syntax of the Vélus source language

Inductive positive : Set :=
| xI : positive -> positive
| xO : positive -> positive
| xH : positive.

Listing 2.2: Binary representation of positive integers

take a type parameter A representing the type of underlying syntactic element. This
parametricity allows us to define and re-use common definitions and proofs for these
syntactic elements. This is particularly useful in the case of scope, where proofs are often
complex and full of administrative details that would be tedious to repeat. The downside
is that it makes the invariants for these proofs particularly long and intricate, as they must
state the property for both the parameter object A and the syntactic constructor scope A
or branch A. We tried to resolve this issue by defining a custom induction scheme, but
this does not seem to be possible with such general definitions.

We provide only one constructor Bauto to handle both types of state machines (weak
or strong transitions). The two types of state machines are distinguished by the first
auto_type parameter. The well-typing predicate ensures that an automaton marked Weak
(respectively Strong) does not contain strong (respectively weak) transitions. Each state
machine is also annotated by a static clock type. As we will discuss in section 2.9, this
annotation is necessary to give a semantics to state machines. State machine transitions
are represented by a list of triplets formed by a condition expression, a state tag, and a
boolean indicating if this transitions should reset the next state on entry (true = then C
or false = continue C). The order of this list gives the relative priority of transitions,
from high to low. The initial state is specified by a list of pairs of conditions and enumtag,
and by a final enumtag (otherwise C) which gives the initial state if all conditions are
false. For a Strong state machine, the list must be empty.

Each node is represented by a Record. It contains the name of the node, the input and
output declarations, and the toplevel block. Note that the types for inputs and outputs
are different, as outputs can optionally be declared with a last expression. The other
fields of the Record, not shown in the listing, contain static invariants of well-formed
nodes, expressed over the previous fields. These invariants are complementary to the
type and clock-type systems, and important for proving the correctness of compilation
passes. They state properties like “the variables defined by equations correspond exactly
to the variables declared in the node”. We give a precise inductive definition for these
invariants in appendix A.1. Expressing them as obligations of a dependant record is
a classic technique inspired by CompCert. It allows us to always have access to them,
without having to add extra assumptions to every lemma. On the other hand, this means
that, when constructing a node during a compilation pass, we need to prove immediately
that these obligations hold. For simplicity, we omit these invariants in the discussions of
correctness proofs and invariants in the remainder of this dissertation.

21

2. Extending Vélus with Control Blocks

Module Type OPERATORS.
(* Back -end Values and Types *)
Parameter cvalue : Type.
Parameter ctype : Type.
Parameter cconst : Type.

(* Velus Values and Types *)
Inductive value :=
| Vscalar : cvalue -> value
| Venum : enumtag -> value.

Inductive type :=
| Tprimitive : ctype -> type
| Tenum : ident -> list ident -> type.

(* Conversions between Values , Types and Constants *)
Parameter ctype_cconst : cconst -> ctype.
Parameter sem_cconst : cconst -> cvalue.
Parameter init_ctype : ctype -> cconst.

(* Operators *)
Parameter unop : Type.
Parameter binop : Type.

Parameter sem_unop : unop -> value -> type -> option value.
Parameter sem_binop : binop -> value -> type -> value -> type -> option value.

Parameter type_unop : unop -> type -> option type.
Parameter type_binop : binop -> type -> type -> option type.
End OPERATORS.

Listing 2.3: Interface with the back end Operators.v:9

2.2 Abstracting the CompCert Back End

In the previous section, we did not define some of the types used in expressions (cconst,
type, unop, . . .). We now discuss the definitions of these types. Vélus is built on top
of the CompCert verified compiler. As such, we chose to have the types and values
manipulated by Vélus be those of the host language, Clight. However, the definition of
these types and values are not so simple: they depend on the architecture targetted by
CompCert, and offer a lot of different options (signedness, size of ints, . . .). The details
of these low-level representations are irrelevant to Vélus, which, as a dataflow language,
is used to specify high-level control. In order to hide these details, we provide a high level
abstraction of the back-end types and values. The OPERATORS module signature presented
in listing 2.3 captures this abstraction. The Parameter Coq command specifies the type
of a definition which must be provided in any Module implementing this signature.

The first three parameters are types: cvalue represents back-end semantic values,
ctype represents back-end types, and cconst represents back-end syntactic constants. In

22

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Operators.html#OPERATORS

2.3. Representing Infinite Sequences

addition to the primitive cvalue, Vélus supports enumerated values. In an enumerated
value, each constructor is represented by an enumtag represented by a natural number,
using the Peano encoding. Similarly, a Vélus type is either a primitive type from the
back end, or an enumerated type, represented as a name and a list of constructors. In
particular, booleans are represented in Vélus by an enumerated type, with name "bool"
and constructors ["false"; "true"]. In the back end, these abstract enumerated types
are represented as machine integers. For instance, for a type type t = A | B | C, value
A is represented by 0, B by 1, and C by 2. In particular, the boolean false is represented
by 0 and true by 1, as would be expected. Vélus does not yet support more general sum
types, which would require a more complex representation in the back end.

The next three parameters are conversion functions between the primitive types, values
and constants: ctype_cconst gives the type of any primitive constant; sem_cconst gives
a semantic value for a syntactic constant; init_ctype provides a default constant for a
given primitive type (for instance, 0 for integers, 0.0f for single-precision floating-point
numbers, etc).

The next parameters specify unary and binary operators, along with partial functions
giving the semantics and typing of these operators. In addition to values, the semantic
functions sem_unop and sem_binop take as input the types of these values. This is because
the semantics of an operator depends on the types of its input values. For instance, 1 + 2
and 1.0 + 2.0 do not have the same semantic, and are not compiled using the same
arithmetic instructions. These semantic functions are partial for two reasons. First, an
operator is not defined for all possible input types. For instance, the bitwise operators
are not defined for floating-point numbers, and addition is not defined for two different
input types. The type-system prevents this class of undefined behavior. The second
class consists in runtime undefined behaviors, such as division by zero or integer overflow.
These behaviors are harder to protect against statically. In Vélus, we follow the choice of
CompCert of not giving a semantics to a program that would encounter an undefined
behavior. In this document, we write ⋄ty1

(v1) and ⊕ty1×ty2
(v1, v2) for the values returned

by these functions, only when they succeed. The last two functions, type_unop and
type_binop give the type of the value produced by an operator for given input types. As
discussed, not all operators support all input types, and these functions are also partial.
We write ⊢ ⋄ty1

: ty and ⊢ ⊕ty1×ty2
: ty to state that these functions succeed and return

type ty . Note that all these operators manipulate Vélus values and types. In particular,
logical operators may be applied to boolean operands. This means that the definition of
sem_unop and sem_binop are not taken directly from the back end, but are extended to
support boolean enumerated values. We do not detail these extended definitions here.
They can be found at ObcToClight/Interface.v:181 and ObcToClight/Interface.v:254.

2.3 Representing Infinite Sequences

Programs written in reactive or synchronous languages are designed to run forever.
Modeling their behavior therefore necessitates modeling this notion of infinity. In a
dataflow synchronous language like Lustre, this means representing the infinite sequences –

23

https://velus.inria.fr/phd-pesin/velusdoc/Velus.ObcToClight.Interface.html#sem_unop
https://velus.inria.fr/phd-pesin/velusdoc/Velus.ObcToClight.Interface.html#sem_binop

2. Extending Vélus with Control Blocks

or streams – of values produced by each syntactic component of a program. In Vélus, two
different representations are used for these sequences: the indexed representation, where
streams are function from natural numbers to values, and the coinductive representation,
where a stream is built by infinite applications of a constructor that adds an element
at its front. Below, we discuss the pros and cons of each representation with regard to
mechanizing the semantics of Lustre.

2.3.1 Indexed Streams

One central operation on sequences is indexing: accessing an element of a sequence by its
index. In a finite sequence, this operation is not trivial, since accessing an element may
fail if the index is too large. Streams however do not have this issue and indexing is total.
A stream can therefore be represented as an indexing function that associates a natural
number n to the nth value in the sequence.

Definition stream A := nat -> A.

Listing 2.4: Indexed stream definition IndexedStreams.v:32

One issue with infinite structures like streams is expressing equality. In Coq, equality
is defined as a binary relation using the Inductive definition shown below. The only
constructor requires its two arguments to be syntactically the same modulo reduction.
Typical Coq proofs establish the equality of two terms by alternating steps of rewriting
(that is, using the transitivity of eq) and reducing the terms, until they are indeed the
same. The inductive definition of eq comes with the eq_rect property, which allows to
replace any term with one that is proven to be equal under any context.

Inductive eq {A} (x: A) : A -> Prop := eq_refl : eq x x.
(* eq_rect: ∀ A (x: A) P, P x ->∀ y, y = x ->P y *)

Listing 2.5: Leibniz equality [Coq]

When manipulating functions, this notion of equality becomes impractical, as it is
not possible to rewrite under a function binder. For instance, it is not possible to prove,
in Coq, that (fun x => x + x) = (fun x => x * 2).

The following definition is for extensional equality on indexed streams. This relation
is weaker than that of eq. The equivalence of two indexed streams can be proven by
establishing that their elements are point-wise equal. The main drawback of such a
definition is that we no longer have the eq_rect property. One must prove, for each
property of interest P, that ∀ (x : stream A), P x -> ∀ y, eq_str y x -> P y. This
happens to be true for most interesting streams properties, since they are only concerned
about the elements of streams, but this is still tedious to prove systematically.

Another issue of this representation is that defining the cons operation, which adds
an element at the start of the stream, is not trivial. A possible definition for cons is

24

https://velus.inria.fr/phd-pesin/velusdoc/Velus.IndexedStreams.html#INDEXEDSTREAMS.stream

2.3. Representing Infinite Sequences

Definition eq_str {A} (xs ys : stream A) := ∀ n, xs n = ys n.

Listing 2.6: Equality of indexed streams IndexedStreams.v:39

presented below. As expected, indexing 0 in cons hd tl returns hd, and indexing with
n > 0 is equivalent to indexing n− 1 in tl.

Definition cons {A} (hd: A) (tl: stream A) : stream A :=
fun n => match n with

| 0 => hd
| S n => tl n
end.

Listing 2.7: Defining cons for indexed streams

We want the mechanized semantics of dataflow operators to emulate the ones present
in the literature, in particular in [CP03, Figure 2]. The cons operation is pervasive in these
definitions, especially in the stateful operators like fby. Although indexed streams are
used in the semantics of intermediate languages of Vélus, we prefer to use a representation
where cons is a more primitive operation for the front-end semantics.

2.3.2 Coinductive Streams

A second possible definition for infinite streams is based on coinductive types. While the
values of inductive types can only be built from a finite number of constructor applications,
coinductive values can be built from an infinite sequence of constructor applications.
Conversely, the definition of a coinductive type does not generate an induction principle,
as the object is not well-founded. This means one can only reason on CoInductive type by
case-analysis and primitive corecursion. We will see further what that means for proofs.

Below is presented the definition of the Stream type from the Coq Standard Library.
It has a single constructor, Cons, which adds an element at the front of the stream. In
the following, we write x · xs for Cons x xs.

CoInductive Stream A := Cons : A -> Stream A -> Stream A.

Listing 2.8: CoInductive stream definition [GC04]

Accessing an element of the stream by its index can be done with the Str_nth function
defined below. Note that the decreasing argument of the function is the natural n, and
not the stream s. In the following, we write s # n for Str_nth n s.

The init_from function shown below allows one to build a coinductive stream from
an indexed stream. It is easy to prove that (init_from 0 f) # n = f n.

25

https://velus.inria.fr/phd-pesin/velusdoc/Velus.IndexedStreams.html#INDEXEDSTREAMS.eq_str

2. Extending Vélus with Control Blocks

Fixpoint Str_nth {A} (n: nat) (s: Stream A) :=
match n with
| O => hd s
| S m => Str_nth m (tl s)
end.

Listing 2.9: Accessing an element of a coinductive stream

CoFixpoint init_from {A} (n: nat) (f: stream A) : Stream A :=
f n · init_from (S n) f.

Listing 2.10: Build a coinductive stream from an indexed stream CoindStreams.v:417

As with indexed streams, it is not practical to use the Leibniz equality eq to reason
about coinductive streams. Indeed, coinductive streams do not reduce to a finite value.
Instead, we define the pointwise equality on streams EqSt below, as a coinductive property.
In the following, we write xs ≡ ys for EqSt xs ys. As with indexed streams, using this
definition unfortunately means having to prove manually that every property of interest
is invariant under EqSt. This is indeed the case for the properties stated later in this
document; we will not discuss any of these boilerplate proofs.

CoInductive EqSt (s1 s2: Stream) : Prop :=
eqst : hd s1 = hd s2 -> EqSt (tl s1) (tl s2) -> EqSt s1 s2.

Listing 2.11: Pointwise equality for coinductive streams

The CoFixpoint command allows for the definition of a corecursive function. List-
ing 2.12 presents the example of map which applies a function pointwise to every element
of a stream. Arguments to corecursive calls do not need to be subterms of the initial
arguments. However, the function needs to be productive: each corecursive call should be
wrapped under a constructor, here Cons. A function that does not respect this constraint
will be rejected by the termination checker of Coq.

CoFixpoint map {A B} (f : A -> B) (s: Stream A) : Stream B :=
Cons (f (hd s)) (map f (tl s)).

Listing 2.12: Applying a function point-wise to every element of a coinductive stream

The following proof script establishes the equivalence of two coinductive streams built
using map with two different, but extensionally equal, functions. The cofix tactic creates
a coinduction hypothesis of the same form as the current goal. As with CoFixpoint
definitions, calls to the coinduction hypothesis must be wrapped under a constructor.
We decompose the stream xs into its head and tail, and immediately apply the only

26

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.init_from

2.4. The Core Dataflow Semantics of Vélus

constructor Cons. We need to prove the equality of the two heads and the equivalence of
the two tails. The first goal is solved by lia, a tactic for solving linear arithmetic goals.
For the second goal, we apply the coinduction hypothesis. This call is indeed guarded by
the constructor applied above.

Lemma proving_EqSt : ∀ xs ,
map (fun x => x + x) xs ≡ map (fun x => x * 2) xs.

Proof.
cofix CoFix. (* We reason coinductively *)
intros [x xs ’].
constructor; simpl.
- (* head , x + x = x * 2 *) lia.
- (* tail , corecursive case *) apply CoFix with (xs:=xs ’).

Qed.

Listing 2.13: Proving equality for two coinductive streams

Although the above proof is simple, reasoning with CoInductive definitions can
sometimes be tricky, as the interaction of tactics may produce unexpected unguarded terms,
which can be very frustrating to debug. One solution may be to use a correspondence
lemma between coinductive and indexed streams, and do the actual proof in the indexed
context. For instance, for map, we can prove that (map f xs) # n = f (xs # n), and
use this equation to simplify proofs. However, coinductive definitions do not always have
simple indexed specification; for instance, the fby operator which we present later is
difficult to characterize in this way, because the values of its output depends on previous
values of its inputs.

2.4 The Core Dataflow Semantics of Vélus

In Lustre, dataflow nodes consist of a system of equations defining the values of node
outputs in terms of inputs and other outputs. It is therefore natural to express the
semantics of the language as a set of constraints between input and output streams, each
equation inducing an additional constraint. These constraints can be formalized, and
mechanized in Coq, as inductive rules over the abstract syntax of the language. In this
section, we will detail the preexisting semantic rules used in Vélus [PLDI17; POPL20].
We mostly present a pen-and-paper formalization of these rules, but we also try to give a
taste of how they are mechanized in Coq.

2.4.1 Histories and Equations

As stated above, we express the semantics of Lustre as constraints between the different
named streams of the node. The central object of this semantic model is therefore the
history, an environment that associates every variable in the node to an infinite stream.
The chronograms presented to illustrate the executions of examples in the previous chapter
are all examples of specific histories.

27

2. Extending Vélus with Control Blocks

In Coq, we use functional maps to represent histories. The definition of a functional
environment (type FEnv.t) is presented below. The type variable K represents the type
of keys, and A the type of values. For some of the operations on environments to make
sense, we require key equality to be decidable. This is enforced using Coq’s type-classes
system, as demonstrated by the fenv_key class below. We do not place any restriction
on the type of values.

Class fenv_key (A : Type) := { fenv_key_eqdec : EqDec A eq }.

Section FEnv.
Context {K : Type} ‘{K_key : fenv_key K}.

Definition t A := K -> option A.
End FEnv.

Listing 2.14: Functional environment FunctionalEnvironment.v:22

Definition history := @Fenv.t ident (Stream svalue).

Listing 2.15: History CoindStreams.v:1445

Histories are then represented as functional mappings where each variable is associated
with a stream of synchronous values svalue. For now, we assume that the keys are
the identifiers used in Vélus (type ident). Since identifiers are represented by positive
integers using an inductive binary representation, their equality is indeed decidable. We
will discuss the svalue type later. In the following semantic statements, we write H(x)
to denote the value associated to x in history H. This operation is only defined if x is
associated to a stream in H, which we write x ∈ dom(H).

In Vélus one semantic judgment is associated to each syntactic type (expressions,
blocks, nodes). We will now present one rule for each of these judgments, focusing on the
rules that constrain the history directly.

The first judgment G,H, bs ⊢ e ⇓ vss states that “under global context G, history H
and base clock bs , the expression e produces the streams vss”. Here, the global context G
associates the name of each node in the program to its definition. The history H, as we
discussed, associates each variable in the node to a stream. We return to base clock bs in
section 2.4.2.

As an expression can be formed using lists of sub-expressions, each expression may pro-
duce several streams. For example, (1, 2, 3) fby (t, if x then (y, z) else (z, y)
produces three streams, and the second expression at right of fby produces two. To
encode this, we say that each expression produces a list of streams. We write [vs] for
the singleton list containing only the stream vs. In semantic rules for operators where
operands are lists of expressions (like fby), since each expression produces a list of streams,
we get a list of lists of streams, which must be flattened to give a semantics to the parent

28

https://velus.inria.fr/phd-pesin/velusdoc/Velus.FunctionalEnvironment.html#t
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.history

2.4. The Core Dataflow Semantics of Vélus

H (x) ≡ vs

G ,H , bs ⊢ x ⇓ [vs]

(a) Svar Lustre/LSemantics.v:143

∀i , H (xi) ≡ vsi G ,H , bs ⊢ es ⇓ [vsi]
i

G ,H , bs ⊢ [xi]
i = es

(b) Seq Lustre/LSemantics.v:255

G(f) = node f (x1, ... , xn) returns (y1, ... , ym) blk
∀i ∈ 1...n, H (xi) ≡ xsi

∀i ∈ 1...m, H (yi) ≡ ysi G ,H , (base-of (xs1, ... , xsn)) ⊢ blk

G ⊢ f (xs1, ... , xsn) ⇓ (ys1, ... , ysm)

(c) Snode Lustre/LSemantics.v:364

Figure 2.2: Semantics of variables, equations and nodes

expression. In the pen-and-paper semantic rules, this flattening is left implicit. In our Coq
mechanization, we use the concat : list (list A) -> list A function to flatten these
lists of streams. This additional detail can sometimes make the proofs more technical,
but allows for more expressivity in the language.

The first rule in figure 2.2 states that a variable in an expression produces the single
stream vs . For this rule to hold, the variable x needs to be associated to the corresponding
stream in the history. Note that we use the stream equality defined in listing 2.11 in the
premise of this rule. This gives flexibility in proofs that construct a semantic derivation.

The second rule concerns equations of the form x+ = e+ . In general, the judgment
G,H, bs ⊢ blk states that “the semantics of block blk is consistent with global context
G, history H and base clock bs”. Note that a block does not produce anything, but
instead adds constraints on the history H. This is particularly true for the equation. The
expressions at right of the equation produce a flattened list of streams. The first premise
constrains the history : the stream associated with each of the variables at left of the
equation must be equal to the corresponding stream produced by the expressions at right.

The third rule concerns nodes. The judgment G ⊢ f(xss) ⇓ yss states that “the node
with name f in G associates the input streams xss to output streams yss”. This holds if
there exists an history H where the names of inputs and outputs are associated to the
input and output streams, and if H satisfies the constraints defined by the body of the
node. Note that the history H is not exposed by this rule: it is given as an existential
in the premises of this rule. In a sense, the history is encapsulated by the node, and
only input and output streams are visible when a node is instantiated. This means that
having a witness of the semantics of a node does not give us a lot of information about
this internal history. In particular, it is not obvious that, given a particular input, there
is only one history that satisfies this rule. We will discuss these issues in chapter 3.

29

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Svar
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Seq
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Snode

2. Extending Vélus with Control Blocks

2.4.2 Sampling and Clock Typing

Vélus streams are sampled, meaning that some may be produced at a slower rate than
others. Our semantics is synchronous, meaning that presence and absence are represented
explicitly. In Coq, this is encoded using the synchronous type presented below. In
the following rules, we write ‹v› for a present value v and ‹› for an absent value. For
simplicity, we will omit these notations in the chronograms showing sample executions.

Inductive synchronous (A : Type) :=
| absent
| present (v: A).

Definition svalue := synchronous value.

Listing 2.16: Synchronous values Operators.v:171

In a synchronous setting, these presences and absences constitute a rythm for the
stream. We can say that a stream xs is faster than a stream ys if xs is always present
whenever ys is present. More formally, we call this rythm the clock of a stream. It is
computed using the clock-of function below: the true and false values in the result
stream correspond to presences and absences in the input stream.

Definition 1 (Clock of a stream CoindStreams.v:1777)

clock-of (‹› · vs) ≜ F · clock-of vs
clock-of (‹v› · vs) ≜ T · clock-of vs

Constant expressions have the fastest rythm in the node: they produces a value
every time the node is activated. The clock of streams produced by constants therefore
correspond to the base clock of the node, bs. The resulting semantic rules are given
in figure 2.3. The base clock depends on the inputs of the node: intuitively, a node is
activated every time at least one of its inputs is present. This is encoded by the base-of
function presented in definition 2. This choice of having a single base clock restricts the
set of programs our compiler can accept: other languages, like Lucid Synchrone [Pou06]
allow for a node having multiple parameters with unrelated clocks.

Definition 2 (Base Clock CoindStreams.v:1162)

base-of ((‹› · xs1), ... , (‹› · xsn)) ≜ F · base-of (xs1, ... , xsn)
base-of ((sv1 · xs1), ... , (svn · xsn)) ≜ T · base-of (xs1, ... , xsn)

The operators presented in the previous section are lifted to streams of present and
absent values. We denote this lifting with ⋄↑ty1

for a unary operator, and ⊕↑
ty1×ty2

for a
binary operator. These lifted operators are defined coinductively in figures 2.4a and 2.4c.
When the inputs are absent, the lifted operators produce an absence. When the inputs are
present, the lifted operators produce a present value by calling the underlying abstracted

30

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Operators.html#OPERATORS_AUX.synchronous
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.abstract_clock
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.clocks_of

2.4. The Core Dataflow Semantics of Vélus

G ,H , bs ⊢ c ⇓ [const bs c]

(a) const CoindStreams.v:478

const (T · bs) c ≜ ‹c› · const bs c
const (F · bs) c ≜ ‹› · const bs c

(b) Sconst Lustre/LSemantics.v:133

Figure 2.3: Semantics of sampled constants

⋄↑ty (‹› · vs1) ≜ ‹› · ⋄↑ty vs1
⋄↑ty (‹v1› · vs1) ≜ ‹ ⋄ty (v1)› · ⋄↑ty vs1

(a) lift1 CoindStreams.v:484

G ,H , bs ⊢ e1 ⇓ [vs1]

typeof e1 = [ty1] ⋄↑ty1 vs1 ≡ vs

G ,H , bs ⊢ ⋄ e1 ⇓ [vs]

(b) Sunop Lustre/LSemantics.v:153

⊕↑
ty1×ty2

(‹› · vs1) (‹› · vs2) ≜ ‹› · ⊕↑
ty1×ty2

vs1 vs2

⊕↑
ty1×ty2

(‹v1› · vs1) (‹v2› · vs2) ≜ ‹⊕ty1×ty2 (v1, v2)› · ⊕
↑
ty1×ty2

vs1 vs2

(c) lift2 CoindStreams.v:496

G ,H , bs ⊢ e1 ⇓ [vs1] G ,H , bs ⊢ e2 ⇓ [vs2]

typeof e1 = [ty1] typeof e2 = [ty2] ⊕↑
ty1×ty2

vs1 vs2 ≡ vs

G ,H , bs ⊢ e1 ⊕ e2 ⇓ [vs]

(d) Sbinop Lustre/LSemantics.v:160

Figure 2.4: Semantics of operators

operator. These lifted operators are partial, for two reasons: first, the lifted operator
may itself be partial, as discussed above; second, they require their arguments to be
synchronized, that is, simultaneously present or absent.

The when and merge operators respectively sample a stream on an enumerated
condition, and combine complementary sampled streams. The essence of their semantics
is captured by the coinductive functions when and merge presented in figures 2.5a and 2.5c.

The when function is applied to three arguments: a constructor C, a value stream xs
and a control stream cs. If both the input and control heads are absent, when produces
an absence. If both are present, and the head of the control stream matches C, then when
produces the head value of xs. Finally, if the head of the control stream does not match
C, when produces an absence.

The merge function provides the opposite operation: it takes a control stream cs and a
list of value streams xss . If the control head is absent, all the value streams heads should
be as well, and an absence is produced. If the head of the control stream is a constructor
Ci, then only the head of the i-th should be present, and its value is produced.

These coinductive functions are used in the semantic rules of figures 2.5b and 2.5d. In
both rules, the condition x is associated to control stream cs. The semantic judgment,
applied recursively, relates the list of sub-expressions with the value streams. In the case

31

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.const
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Sconst
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.lift1
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Sunop
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.lift2
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Sbinop

2. Extending Vélus with Control Blocks

whenC (‹› · xs) (‹› · cs) ≜ ‹› · whenC xs cs

whenC (‹v› · xs) (‹C › · cs) ≜ ‹v› · whenC xs cs

whenC (‹v› · xs) (‹C ′› · cs) ≜ ‹› · whenC xs cs

(a) when CoindStreams.v:522

G ,H , bs ⊢ es ⇓ [xsi]
i

H (x) ≡ cs ∀i , whenC xsi cs ≡ vsi

G ,H , bs ⊢ es whenC (x) ⇓ [vsi]
i

(b) Swhen Lustre/LSemantics.v:190

merge (‹› · cs) (‹› · xs1, ... , ‹› · xsm) ≜ ‹› ·merge cs (xs1, ... , xsm)

merge (‹Ci› · cs) (‹› · xs1, ... , ‹v› · xsi , ... , ‹› · xs ′m) ≜ ‹v› ·merge cs (xs1, ... , xsi , ... , xs ′m)

(c) merge CoindStreams.v:538

H (x) ≡ cs ∀i , G ,H , bs ⊢ esi ⇓ [xsi j]
j ∀j , merge cs [xsi j]i ≡ vsj

G ,H , bs ⊢ merge x [Ci=>esi]i ⇓ [vsj]
j

(d) Smerge Lustre/LSemantics.v:197

b T T F F T F T F F . . .
x 1 2 3 4 5 6 7 8 9 . . .
y = x when true(b) 1 2 5 7 . . .
z = (x * 2) when false(b) 6 8 12 16 18 . . .
merge b (true -> y) (false -> z) 1 2 6 8 5 12 7 16 18 . . .

(e) Example trace of when and merge

Figure 2.5: Semantics of when and merge

of when, the operator is applied pointwise to these value streams to produce streams for
the full expression. In the case of merge, each of the m branches of the merge contains a
list of sub-expressions that produces n streams. The merge operator is applied pointwise
“perpendicularly” which produces the n streams for the full expression.

Note that both when and merge, as well as the lifting of a binary operation are only
defined for very specific combinations of presence and absence. In Coq, these functions
are actually represented as coinductive relations between inputs and output, since Coq
does not allow for partial function definitions.

These constraints are an integral part of the synchronous model [CP96]. Indeed,
consider the buffered node in figure 2.6. The h stream switches between true and false
at every cycle. The sampled stream x when h is therefore only present in half of the cycles.
What stream should be associated to y ? If we consider a Kahnian semantics [Kah74] and
forget explicit absences, the nth value associated to y should be equal to the sum of the
nth value associated to x and the nth value associated to x when h. This is the behaviour
presented in the chronogram at right. This has two effects: first, values for y are only
available when values for x when h are available. Second, y does not consume values of x
as fast as they are produced. This means that, to compile this program, values of x would
have to be buffered until they can be consumed. Moreover, as values of x are produced
twice as fast as they are consumed, the size of this buffer would be unbounded. This is

32

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.when
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Swhen
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.merge
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Smerge

2.4. The Core Dataflow Semantics of Vélus

node buffered(x : int)
returns (y : int)
var h : bool;
let
h = true fby (not h);
y = x + (x when h);

tel

x x1 x2 x3 x4 x5 . . .
h T F T F T . . .
x when h x1 x3 x5 . . .
y x1 + x1 x2 + x3 x3 + x5 . . .

Figure 2.6: A non-synchronous node and its execution

not acceptable, especially in the context of embedded systems programming, and this
program should thus be rejected.

This synchrony is reflected in the semantic rules we presented until now, where absences
and presences have to correspond. It is possible to statically ensure that “synchrony errors”
never happen in a given program by using a static clock-typing analysis. The clock-type
system of Vélus is a direct encoding of the one proposed in [CP96].

A clock type is either the base clock • or a sampled clock ck on C(x). Each variable in
a node must be declared with its clock by the programmer. Each expression is associated
with a list of clocks (one for each stream produced by the expression). The judgment
G,Γ ⊢wc e : cks means “under a global context G and a local environment Γ, e is well
clocked with clock type cks”.

Figure 2.7 presents some of the core rules defining this judgment. A constant always
has the base clock type; this corresponds to the boolean clock of a constant being the
base clock bs . The clock type of a variable is the one with which it is declared, accessible
through the environment Γ. The clock types of the two operands of a binary operator must
be the same, as outlined in the buffered example. If the sub-expressions of a when have
clock type ck, then the expression sampled by C(e) must have clock ck on C(e). Again,
this corresponds to the semantic rule for when. Finally, the rule for merge imposes that
sub-expressions have complementary clock types ck on C_i(x), where x is the condition
of the merge. The produced stream has, as expected, the parent clock type ck. As we see
in the last two rules, the conditions of when and merge must be variables because they
appear in clock types. The rest of the clock-type system of the Vélus language is detailed
in appendix A.3.

Although these clock-typing rules intuitively correspond to the semantic rules, it is
not trivial to establish that, for any program, the produced streams actually correspond
to the declared clock types. We discuss this issue in section 3.5.

2.4.3 Stateful Operators

Until now, we have presented combinatorial operators, where the output value at each
cycle only depends on the input value at the same cycle. The language also provides
stateful operators, where output values depend on the input values from earlier cycles.

33

2. Extending Vélus with Control Blocks

G ,Γ ⊢wc c : [•]

(a) wc_Econst Lustre/LClocking.v:56

Γ(x) = ck

G ,Γ ⊢wc x : [ck]

(b) wc_Evar Lustre/LClocking.v:62

G ,Γ ⊢wc e1 : [ck] G ,Γ ⊢wc e2 : [ck]

G ,Γ ⊢wc e1 ⊕ e2 : [ck]

(c) wc_Ebinop Lustre/LClocking.v:76

Γ(x) = ck G ,Γ ⊢wc es : [ck]j

G ,Γ ⊢wc es whenC (x) : [ck onC (x)]j

(d) wc_Ewhen Lustre/LClocking.v:103

Γ(x) = ck ∀i , G ,Γ ⊢wc esi : [ck onCi(x)]
j

G ,Γ ⊢wc merge x [Ci=>esi]i : [ck]j

(e) wc_Emerge Lustre/LClocking.v:110

Figure 2.7: A few clock-typing rules

fby (‹› · xs) (‹› · ys) ≜ ‹› · fby xs ys
fby (‹v1› · xs) (‹v2› · ys) ≜ ‹v1› · fby1 v2 xs ys

fby1 v0 (‹› · xs) (‹› · ys) ≜ ‹› · fby1 v0 xs ys

fby1 v0 (‹v1› · xs) (‹v2› · ys) ≜ ‹v0› · fby1 v2 xs ys

(a) fby Lustre/LSemantics.v:44

G ,H , bs ⊢ es0 ⇓ [xsi]
i

G ,H , bs ⊢ es1 ⇓ [ysi]
i

∀i , fby xsi ysi ≡ vsi

G ,H , bs ⊢ es0 fby es1 ⇓ [vsi]
i

(b) Sfby Lustre/LSemantics.v:176

b T T F F T T F T F T T . . .
x = 0 fby (x + (1 when b)) 0 1 2 3 4 5 6 . . .

(c) Example trace of fby on a sampled stream

Figure 2.8: Semantics of fby

The first of these operators is fby (followed-by). The stream associated to e0 fby e1
consists of the first value of e0, followed by the stream associated to e1. The stream
of e0 fby e1 should have the same clock as the streams of e0 and e1. The semantic
functions and rule specifying this behavior are presented in figure 2.8. The fby function
produces the first present value of the left stream, and then applies fby1, holds the first
present value of the right stream, and only produces it when the right stream produces
another present value. Both functions produce an absence if both input streams are
absent. In that case, the value held by fby1 does not change. As usual, the semantic rule
for fby simply applies the fby function pointwise to the list of streams produced by the
sub-expressions.

The second core stateful operator is the initialization arrow ->. The expression e0 -> e1
replaces the first present value of e1 with that of e0. In a sense, this construction allows
to define a specific behavior for the first cycle. The semantic rules for this construction

34

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_Econst
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_Evar
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_Ebinop
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_Ewhen
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_Emerge
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.fby
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Sfby

2.4. The Core Dataflow Semantics of Vélus

arrow (‹› · xs) (‹› · ys) ≜ ‹› · arrow xs ys

arrow (‹v1› · xs) (‹v2› · ys) ≜ ‹v1› · arrow1 xs ys

arrow1 (‹› · xs) (‹› · ys) ≜ ‹› · arrow1 xs ys

arrow1 (‹v1› · xs) (‹v2› · ys) ≜ ‹v2› · arrow1 xs ys

(a) arrow Lustre/LSemantics.v:62

G ,H , bs ⊢ es0 ⇓ (xs1, ... , xsn)
G ,H , bs ⊢ es1 ⇓ (ys1, ... , ysn)
∀i ∈ 1...n, arrow xsi ysi ≡ vsi

G ,H , bs ⊢ es0 -> es1 ⇓ (vs1, ... , vsn)

(b) Sarrow Lustre/LSemantics.v:183

Figure 2.9: Semantics of the initialization arrow ->

G ,H , bs ⊢ es ⇓ xss G ⊢ f (xss) ⇓ yss

G ,H , bs ⊢ f (es) ⇓ yss

Figure 2.10: Semantics of a node instantiation

are presented in figure 2.9. As with fby, there are two coinductive functions, arrow and
arrow1. The second does not need to hold a value, as the arrow does not induce a delay.
Instead, passing from arrow to arrow1 simply changes which of the two streams values are
produced.

The initialization arrow is particularly useful in conjunction with the pre operator.
Like fby, the expression pre e delays the stream of e to the next cycle, but does not give
an initial value. The value of pre e at the first cycle is not defined, which is not an issue if
this expression only appears at right of an initialization arrow. In particular, e0 -> pre e1
is equivalent to e0 fby e1. Languages with pre require a dedicated initialization anal-
ysis [CP04] to check that uninitialized streams are not used improperly. We have not
implemented such an analysis in Vélus, and pre is not included in our language. It may
be tempting to define pre with a fixed, arbitrary initial value, and see pre e as equivalent
to 0 fby e, but this violates the spirit of the operator and introduces an unnecessary
initialization in the generated code.

2.4.4 Node Instantiation

Every node defined in a Vélus program can be instantiated within another in order to
define complex behaviors modularly. To ensure that all programs run in bounded time
and stack space, it is not possible to recursively instantiate a node. This is enforced by a
simple static check: a node may only instantiate nodes defined earlier in the program.
The semantics of a node instantiations are straightforward and given in figure 2.10. The
list of arguments es produces a list of streams xss that is passed to the node. The node
associates these inputs to list of output streams yss, according to the rule presented in
figure 2.2c.

35

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.arrow
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Sarrow

2. Extending Vélus with Control Blocks

Γ ⊢wc •
Γ ⊢wc ck Γ(x) = ck

Γ ⊢wc ck onC (x)

(a) wc_clock Clocks.v:155

∀x ck , Γ(x) = ck =⇒ Γ ⊢wc ck

⊢wc Γ

(b) wc_env Clocks.v:166

⊢wc ins ⊢wc (ins + outs) G , (ins + outs) ⊢wc blk

G ⊢wc node f (ins) returns (outs) blk

(c) wc_node Lustre/LClocking.v:215

Figure 2.11: Clock-Typing rules for clocks, environments and nodes

Clock dependencies in node arguments The Vélus language allows for subsampling
in the inputs and outputs of nodes [EMSOFT21]. This means that an input or output
stream may be sampled on another input or output stream. This is modeled in the
clock-type system by dependencies between the clock types associated to input and output
variables. Figure 2.11 presents the corresponding clock-typing rule. First, we define what
it means for a clock to be well clocked. The base clock • is always well clocked. A sampled
clock ck on C(x) is well clocked with respect to an environment Γ if ck is well clocked
and x is associated with the same ck in Γ. This sampling rule corresponds to the rule for
when presented in figure 2.7. We say that an environment is well clocked if all the clocks
appearing within it are themselves well clocked, under the environment itself. The last
rule in figure 2.11 indicates that a node is well clocked if its input environment is, the
union of its input and output environments is, and if its body is.

These definitions imply several interesting properties. First, subsampling depen-
dencies are not constrained by the order of input and output arguments. Signatures
f(b : bool; x : int when b) and g(x : int when b; b : bool) are both valid. Second,
outputs may depend on both inputs and other outputs, but the first premise implies that
an input may depend only on other inputs and never on an output.

Another interesting property is that a non-empty, well-clocked environment always
contains at least one base clock type. This is stated formally by lemma 1.

Lemma 1 (Existence of a base clock Lustre/LClocking.v:354)

if ⊢wc Γ and Γ ̸= ∅ then ∃x,Γ(x) = •

One implication of this lemma is that there exists at least one input stream of the
node that is present at least as often as all the others. The base-of function described in
figure 2.2 returns the clock of this particular stream.

Subsampled node instantiation We now discuss how subsampling is treated by
the clock-type system. In Vélus, a node f may be instantiated by another node g with
sampled inputs: the fastest input of f may be slower than other streams in g. Statically,
this means that the base clock type of f is not necessarily the same as the base clock

36

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Clocks.html#CLOCKS.wc_clock
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Clocks.html#CLOCKS.wc_env
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_node
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_env_has_Cbase

2.4. The Core Dataflow Semantics of Vélus

type of the instance. To support this behavior, the clock-type system of Vélus needs to
allow for a limited form of clock-type polymorphism. This is complicated by the possibility
of dependencies between the clock types of inputs and outputs of a node. Indeed, a
dependency in the parameters of a node induces a dependency in the arguments of its
instance.

Consider the example of listing 2.17, which contains all kinds of dependencies. Both
the second input x, and the first output y of node f are sampled by its first input b. The
second output of f is itself sampled by y, and implicitly by b. We do not show the body
of f, which is unimportant here. Node g instantiates f, passing as a first input b2, which
is itself sampled by b1. The second input of g is the constant 0, sampled by b1 and b2.
Note that these when do not need to be added explicitly by programmers: they can be
inferred and added by the elaboration pass described in section 4.3. The outputs of the
node, y1 and z1 are correctly declared as sampled by b2 and y1 respectively.

node f(b: bool; x: int when b) returns (y: bool when b; z: int when y)

node g(b1: bool; b2: bool when b1) returns (y1: bool when b2; z1: int when y1)
let

(y1, z1) = f(b2, 0 when b1 when b2);
tel

Listing 2.17: Subsampled instantiation of a node with clock dependencies

We now show how the clock-type system relates the clock types of the formal parameters
of the node, the clock types of the argument expressions, and the clock types of the
instantiation. This relation is formalyzed by a clock type instantiation function, instck,
presented in figure 2.12a. In addition to the clock to instantiate, it takes two parameters:
the base clock of the node instantiation bck and a substitution of parameter variables
to argument variables. We say that the node instantiation is well clocked if we can find
bck and sub such that all inputs/outputs clock types of the node can be instantiated by
instck to the clock types of argument expressions/of the instantiation. In the example,
the following pairs of parameters/arguments must be unified by instck.

node f(b :: bck with b2 :: • on true(b1)
x :: bck on true(b) with _ :: • on true(b1) on true(b2)

returns(y :: bck on true(b) with y1 :: • on true(b1) on true(b2))
z :: bck on true(b) on true(y) with z1 :: • on true(b1) on true(b2) on true(y1)

This is possible by taking bck = • on true(b1) and σ = {b 7→ b2; y 7→ y1; z 7→ z1}. Note
that some of these instantiated clocks depend on variables b2 and y1. For this system to
be sound, these variables must be associated with the parameters b and y respectively. In
order to formalize this constraint, we use the notion of named clock introduced in [CP03].
We write (x : ck) for the named clock ck of variable x. These annotations are used to
denote streams that are associated with named variables, on which some other clocks
might depend. Inversely, we write (_ : ck) for the clock of an anonymous stream; by

37

2. Extending Vélus with Control Blocks

instckσbck • ≜ bck

instckσbck ck onC (x) ≜ (instckσbck ck) onC (σ(x))

(a) instck Clocks.v:22

Γ(x) = ck

G ,Γ ⊢wc x : [(x : ck)]

x1 /∈ σ instckσbck ck1 = ck2

WellInstantiatedbckσ (x1 : ck1) (_ : ck2)

σ(x1) = x2 instckσbck ck1 = ck2

WellInstantiatedbckσ (x1 : ck1) (x2 : ck2)

(b) WellInstantiated Lustre/LClocking.v:43

G ,Γ ⊢wc es : [ncki]
i G(f) = node f ([xi on icki]i) returns ([yj on ockj]j) blk

∀i , WellInstantiatedbckσ (xi : icki)ncki ∀j , WellInstantiatedbckσ (yj : ockj) (_ : ck ′j)

G ,Γ ⊢wc f (es) : [ck
′
j]
j

(c) wc_Eapp Lustre/LClocking.v:130

∀j , Γ(y ′j) = ck ′j
G ,Γ ⊢wc es : [ncki]

i G(f) = node f ([xi on icki]i) returns ([yj on ockj]j) blk
∀i , WellInstantiatedbckσ (xi : icki)ncki ∀j , WellInstantiatedbckσ (yj : ockj) (y

′
j : ck

′
j)

G ,Γ ⊢wc [y
′
j]
j = f (es)

(d) wc_EqApp Lustre/LClocking.v:140

Figure 2.12: Clock-typing rules for node instantiation

abuse of notation, we may just write ck . The clock of the expression containing only a
variable is named, because we know that possible dependencies can refer to this variable.
For instance, in the example, the clock of expression b2 is (b2 : • on true(b1)). We
formalize this by modifying the clock-typing rule for the variable, as shown in figure 2.12,
at top right. The clock of any other expression is anonymous.

The WellInstantiated predicate presented in figure 2.12b uses named clocks to constrain
σ and bck according to the parameters and arguments of the node. If the argument clock
is anonymous, then the parameter name should not appear in the substitution: no other
clock may depend on it. If it is named, then the parameter name is associated with
the argument name. The argument clock must correspond to the instantiation of the
parameter clock.

We now direct our attention to the full clock-typing rule for node instantiations,
displayed in figure 2.12c. As expected, WellInstantiated is applied to the list of input
parameters and argument clocks, and to the list of output parameters and output clocks.
Note however that all the output clocks are anonymous. This is because, in the general
case, there is no variable directly associated with the output of an instantiation. If the
instantiation is directly at right of an equation, we can use the variables at left of the
equation, as presented in figure 2.12d. This corresponds to the case treated in our example.

38

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Clocks.html#CLOCKS.instck
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.WellInstantiated
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_Eapp
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_EqApp

2.5. Semantics of Switch

However, if the instantiation appears in a nested expression, there is no natural candidate
for naming clocks.

An early solution was to associate unique, local names to each output of the instanti-
ation. These names could then be used to formalize the dependencies between output
clocks. However, this approach introduces too many complications in the formalization,
compiler, and proofs. In particular, it was cumbersome to keep track of the uniqueness of
these local names. For simplicity, we decided to drop it. For the user of the language, this
means that a node with clock dependencies in its output (like the one in the example)
cannot be instantiated in a nested expression, but only directly at right of an equation.
For instance, in the above example, we could not write f(f(b2, 0 when b1 when b2)).
While, in theory, this restricts the class of accepted programs, we have not yet encountered
a real world program that would be impacted by this change, and it would not be hard
to adapt it if necessary.

2.5 Semantics of Switch

As described in the introduction, the purpose of a switch block is to control the activation
of its sub-blocks. What does it formally mean for a block to be activated during a cycle?
First, only activated blocks impose their constraints on the global history. Second,
the stateful constructs such as fby must only be updated when the enclosing block is
activated. This second constraint corresponds exactly to the behavior of stateful constructs
on sampled streams, demonstrated in figure 2.8c. The values in the stream produced by
the fby semantic operator are independent of absences in the input streams. In other
words, inserting or removing absences in input streams inserts or removes corresponding
absences in output streams, but does not change their actual values.

2.5.1 Activation and Sampling

The insertion and removal of absences is at the core of the semantic model we propose
for control blocks such as switch. We describe the switch as essentially a block-based
composition of when and merge, with activation expressed by sampling. The switch_ex
node presented in figure 2.13 gives a concrete example of this idea. When c is equal to
A, the first branch is active and the equation y = (0 fby y) + 1 constrains the value of
y. Only one branch is active and applies its constraints at each cycle. This gives three
complementary views of the global stream y. Each view corresponds to a sampling of y
by the condition of the switch.

The semantic judgment for a switch block is presented in figure 2.14. Each branch
of the switch is defined in a sampled context whenCi (H, bs) cs, where cs is the stream
produced by the switch guard. Sampling the history H ensures that the streams of
variables read within a sub-block are sampled coherently. Sampling the base clock bs
ensures that the streams of constants within a sub-block are also sampled coherently.
Intuitively, all streams produced at the leaves of the AST are sampled coherently, therefore
all streams produced in the block are also sampled coherently.

39

2. Extending Vélus with Control Blocks

type t = A | B | C

node switch_ex(c : t)
returns (y : int)
let

switch c
| A do y = (0 fby y) + 1
| B do y = (0 fby y) - 1
| C do y = 0
end

tel

c A A A B B C B A A . . .
y when A(c) 1 2 3 4 5 . . .
y when B(c) -1 -2 -3 . . .
y when C(c) 0 . . .
y 1 2 3 -1 -2 0 -3 4 5 . . .

Figure 2.13: Example trace of switch

G ,H , bs ⊢ e ⇓ [cs]

∀i , G ,whenCi (H , bs) cs ⊢ blksi

G ,H , bs ⊢ switch e [Ci do blksi]i end

(a) Sswitch Lustre/LSemantics.v:293

whenbC (b · bs) (‹C › · cs) ≜ b · whenbC bs cs

whenbC (b · bs) (sv · cs) ≜ F · whenbC bs cs

(b) fwhenb CoindStreams.v:2974

(whenC H cs)(x) = whenC (H(x)) cs

whenC (H, bs) cs = (whenC H cs,whenbC bs cs)

(c) when_hist CoindStreams.v:2937

Figure 2.14: Semantics of switch

We now formally define the operation whenC (H, bs) cs which samples histories and
boolean clocks. For clocks, we define the whenb function, as shown in figure 2.14b. When
the control stream cs is present and the constructor is the expected one, the boolean
value of the clock is kept. In all other cases, the output value is false. Indeed, absence
in a stream corresponds to false in its boolean clock. The clock-type systems guarantees
that the base clock being filtered may be faster, but not slower, than the clock of the
control stream. This means that, in the first case of the definition, b will always be
true, and in the second case, if b is false, sv may only be absent. We choose not to
impose these restrictions in the definition of whenb, and instead provide this simpler,
total function. Lifting when to histories is trickier. As we have seen, when applied to
a stream of values is a partial function. It only applies to streams that have the same
clock as the control stream. In a history H, some streams may not respect this property.
We define whenC H cs as a total function producing a filtered and sampled history. We
have x ∈ dom(whenC H cs) if and only if x ∈ dom(H), and if the stream xs associated
with x in H has the same clock as cs . If that is the case, (whenC H cs)(x) is defined and
equal to whenC xs cs. In our Coq mechanization, we define this function as an inclusion
relation between source and sampled histories.

40

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Sswitch
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.fwhenb
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.when_hist

2.6. Semantics of Reset

G ,Γ ⊢wc e : [ck] ∀x ck ′, Γ′(x) = ck ′ =⇒ Γ(x) = ck ∧ ck ′ = • ∀i , G ,Γ′ ⊢wc blksi

G ,Γ ⊢wc switch e [Ci do blksi]i end

Figure 2.15: Clock-typing rule for switch Lustre/LClocking.v:185

2.5.2 Clock Typing of Switch Blocks

As we described above, only streams on the same clock as the condition stream may
be sampled by when. This means that only these streams may be used or defined in
the sub-blocks of a switch. This semantic constraint is captured by a static condition:
only variables with the same clock type as the condition may appear in sub-blocks of
the switch. This is expressed in the clock-typing rule presented in figure 2.15. It states
that, in the clock-typing environment Γ′ used for clock typing sub-blocks, x may only be
associated to a clock ck ′ if (i) x was associated with the clock ck of the condition in the
initial environment Γ, and (ii) ck′ is the base clock type. Note that this restriction only
applies to global variables coming from outside of the switch: inside each branch, a local
declaration may have an arbitrary clock type.

This rule is somewhat different from the one proposed in [CPP05], where the authors
define an operation Γ onck C(c) which filters and samples environment Γ to produce an
environment where all remaining clocks are ck on C(c), instead of just •. Our rule is
slightly simpler because our clock-type system only admits a single base clock for each
node, while the clock-type system described in [CPP05] allows the user to write nodes
with multiple unrelated clock variables. Our simplification has two main consequences
for the rest of the project. On the one hand, it simplifies the statement and proof of
the clock correctness theorem discussed in section 3.5. On the other hand, it means
that the compilation of switch blocks presented in section 4.8 must update clock-type
annotations when going from a “slow” context to a “fast” context, which complicates some
proof invariants. Since this complication only appears in one pass of the compiler, we
think that this choice is the right one.

2.6 Semantics of Reset

In the introduction, we saw how the reset construct is used to reinitialize stateful
constructs. The modular reset operator was first introduced in [HP00], where the
authors describe its intuitive behavior as (a variant of) the program below.

41

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_Bswitch

2. Extending Vélus with Control Blocks

node true_until(r : bool) returns (c : bool)
let c = true -> if r then false else (true fby c);
tel

node reset_f(r : bool; x : int) returns (y : int)
let

switch true_until(r)
| true do y = f(x)
| false do y = reset_f(r, x)
end

tel

Listing 2.18: Recursive behavior of reset

The node true_until(r) outputs true until its input becomes true. Afterwards, it
always outputs false. The second node, reset_f takes two inputs: a reset signal r and
an input x to be passed to a hypothetical node f. The node is built from a switch with
true_until(r) as a condition. Therefore, the first branch, which instantiates f directly, is
activated until a first true is received on r. Afterwards, the second branch is activated,
and instantiates reset_f recursively. This recursive instantiation has the same behavior,
but since r is sampled by the switch, it ignores the first true, and activates the first
branch a second true is received on r. The same behavior is repeated every time a true
is received. It is exactly the expected behavior of modular resetting of f, which we would
write (reset f every r)(x) in Scade 6 [CPP17] and Vélus.

Of course, writing this program is not possible in Vélus, as recursive node instantiations
are forbidden. In this particular case, the program would use unbounded space to keep
track of an infinite number of states for f. In theory, it would be possible to apply a
tail-call optimization to compile this program to imperative code using bounded space,
since once the recursive branch is entered, it will never be left. However, only a very
clever compiler could do so: it would require detecting and proving an invariant of the
true_until node. Instead, Vélus implements a dedicated compilation scheme for modular
resets and reset blocks, which we detail in chapters 4 and 5. In this section, we show
how we mechanize the semantics of this construct.

2.6.1 Reset as Sampling

As discussed above, a reset operation can be described using a switch and recursive
instantiations. In the previous section, we described how the semantics of switch can be
mechanized using sampling. Following this path, we can represent the semantics of a reset
using sampling. This idea was already present in [POPL20], where the authors introduce
the maskkk′ rs xs operator presented in figure 2.16a, with an example in figure 2.16b. The
boolean stream rs corresponds to the stream of the reset condition. An instance of the
value stream xs consists of the section of the stream between two trues on the control
stream. We number these instances: instance n is located between the nth (included) and
(n+1)th (excluded) occurences of true in the control stream, or before the first occurence

42

2.6. Semantics of Reset

maskkk ′ (F · rs) (sv · xs) ≜ (if k ′ = k then sv else ‹›) ·maskkk ′ rs xs

maskkk ′ (T · rs) (sv · xs) ≜ (if k ′ + 1 = k then sv else ‹›) ·maskkk ′+1 rs xs

(a) mask CoindStreams.v:2414

xs 0 1 2 3 4 5 6 7 8 9 . . .
rs F F T F F F T F T F . . .
mask0 rs xs 0 1 ‹› ‹› ‹› ‹› ‹› ‹› ‹› ‹› . . .
mask1 rs xs ‹› ‹› 2 3 4 5 ‹› ‹› ‹› ‹› . . .
mask2 rs xs ‹› ‹› ‹› ‹› ‹› ‹› 6 7 ‹› ‹› . . .
mask3 rs xs ‹› ‹› ‹› ‹› ‹› ‹› ‹› ‹› 8 9 . . .

(b) Example execution of mask

bools-of (‹T› · xs) ≜ T · bools-of xs
bools-of (‹F› · xs) ≜ F · bools-of xs
bools-of (‹› · xs) ≜ F · bools-of xs

(c) bools_of CoindStreams.v:1214

(maskk rs H)(x) = maskk rs (H(x))

maskk rs (H, bs) = (maskk rs H,maskbk rs bs)

(d) mask_hist CoindStreams.v:2421

G ,H , bs ⊢ es ⇓ xss
G ,H , bs ⊢ e ⇓ [ys] bools-of ys ≡ rs

∀k , G ⊢ f (maskk rs xss) ⇓ (maskk rs yss)
G ,H , bs ⊢ (reset f every e)(es) ⇓ yss

(e) Sapp Lustre/LSemantics.v:246

G ,H , bs ⊢ e ⇓ [ys] bools-of ys ≡ rs

∀k , G ,maskk rs (H , bs) ⊢ blks

G ,H , bs ⊢ reset blks every e

(f) Sreset Lustre/LSemantics.v:286

Figure 2.16: Semantics of reset

of true if n = 0. The index k indicates which instance must be produced. In the example,
mask0 rs xs is the first instance of xs , mask1 rs xs the second, etc. In general, maskk0 rs xs
produces the kth instance of xs reset by rs. Its definition uses an accumulator k′ which
indicates how many instances have been crossed so far. This accumulator starts at 0; in
the following, we simply write maskk rs xs when the accumulator is 0. When true occurs
on the condition stream, the accumulator is incremented. Values of xs are produced only
when the correct instance is reached, that is when the accumulator is equal to k. Note
that the mask function is total.

In [POPL20], the authors apply this masking operation to implement the modular
reset on node instantiations. The corresponding rule is given in figure 2.16e. The reset
condition produces the value stream ys that is turned into a boolean stream by bools-of,
which extracts boolean values from a stream of synchronous values, and replaces absence
with false. Both the inputs and outputs of the instantiation are sampled using mask into
an infinite number of instances. This models an infinite number of instantiations to the
node that do not communicate with one another, and each starts afresh.

We adapt this idea to resetting whole blocks of equations. Instead of a sampling
inputs and outputs, we use mask to sample the history and base clock, just as we did

43

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.mask
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.bools_of
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.mask_hist
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Sapp
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Sreset

2. Extending Vélus with Control Blocks

node expect(i : bool)
returns (o : bool)
let o = i or (false fby o);
tel

node abro(a, b, r : bool)
returns (o : bool)
let
reset
o = expect(a) and expect(b);

every r;
tel

a T F F F T F F T F . . .
b F T F F F F T F F . . .
r F F F T F T F F F . . .
o F T T F F F F T T . . .

Figure 2.17: Example trace of the abro node

G ,Γ ⊢wc e : [ck] G ,Γ ⊢wc blks

G ,Γ ⊢wc reset blks every e

Figure 2.18: Clock-Typing rule for reset Lustre/LClocking.v:179

for switch. As mask is a total function, this lifting is easier. Lifting mask to histories
consists in applying it pointwise to every stream in the history. The mask function is also
applied to clock streams by interpreting absences in the definition of figure 2.16a as false.
The semantics of sub-blocks is then given under an infinite number of instances of the
history and base clock.

The behavior of reset on blocks is illustrated by the ABRO program, initially defined
in [Ber00, §3.1] and adapted to Lucid Synchrone in [Pou06, §1.3.6]. Its implementation
in the Vélus syntax is presented in figure 2.17. The output o becomes true after a true
has occured on a and b, and before a true occurs on r. In this example, when r is true,
the internal states of both expect nodes are reset, which corresponds to the expected
behavior. An example trace for this node is presented at right.

2.6.2 Clock Typing of Reset

As we have seen above, the mask function is total. While bools-of is not total, it is defined
as long as its input only contains true and false values. It simply converts absence to
false: semantically, if the reset stream is absent, no reset should occur. This means that,
together, these functions do not impose any synchrony constraint on the condition and
value streams. The condition stream may be faster or slower than the value stream. The
clock-typing rule for reset blocks reflects this leniency: the clock type of the condition is
unrelated to the clock types used in the sub-blocks.

Note that this clock-typing rule is only acceptable for a synchronous semantics where

44

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_Breset

2.7. Semantics of Local Declarations

∀x , x ∈ dom(H ′) ⇐⇒ x ∈ locs
G ,H +H ′, bs ⊢ blks

G ,H , bs ⊢ var locs let blks tel

(a) sem_scope Lustre/LSemantics.v:108

(H1+H2)(x) =

{
if x ∈ H2 then H2(x)

else H1(x)

(b) union FunctionalEnvironment.v:413

Figure 2.19: Semantics of local declarations

absence is explicit. In a Kahnian semantic, where streams only contain present values, we
could not convert explicit absences to false. If the two streams are not synchronized,
then the slower one would have to be buffered, potentially with an unbounded buffer.
In our semantic model, having an explicit absence meaning “do not reset” allows us to
sidestep this issue, and obtain a more flexible language, which is particularly useful for
intermediate compilation steps, as discussed in chapter 4.

2.7 Semantics of Local Declarations

The Vélus source language allows for blocks of local declarations to be arbitrarily nested
with other control blocks. This has two advantages. First, it is useful for implementing
compilation algorithms. Most of these algorithms, as we will see in chapter 4, need to
introduce fresh variables in the node. We can use local declarations to introduce these
variables locally, where they are needed, rather than globally. Second, local declarations
are also useful for the programmer. For instance, one could declare a local variable only
in one of the cases of a switch. The semantics of a block of local declarations is specified
by the rule presented in figure 2.19a. If the semantics of the declaration is given under
a history H, then the semantics of the sub-blocks is given under an extended history
H +H ′. The extension operator + is defined in figure 2.19b. It gives priority to its right
operand, but this is not actually important in the semantic rule. We now discuss why.

Shadowing Consider the node in listing 2.19. Its output, y, is sampled by its input, x.
However, the name of its input is reused to declare a local variable. The occurences of x
under the local declaration should therefore refer to this local x. This is a problem because
y is defined under this declaration as 0 when x. This should not be well clock-typed, as
this x is not the one used in the declaration of y. This node should be rejected.

node shadows(x : bool) returns (y : int when x)
var x : bool;
let

x = false;
y = 0 when x;

tel

Listing 2.19: Lustre node with redeclaration of a variable

45

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.sem_scope
https://velus.inria.fr/phd-pesin/velusdoc/Velus.FunctionalEnvironment.html#union

2. Extending Vélus with Control Blocks

H (last x) ≡ vs

G ,H , bs ⊢ last x ⇓ [vs]

(a) Slast Lustre/LSemantics.v:148

G ,H , bs ⊢ e ⇓ [vs0]
H (x) ≡ vs1 H (last x) ≡ fby vs0 vs1

G ,H , bs ⊢ last x = e

(b) Slastd Lustre/LSemantics.v:278

Figure 2.20: Semantics of shared variables

To be able to reject it, the clock system needs to associate a unique clock variable name
to each declaration, instead of using the variable name directly. Here, suppose that clock
variable x1 is associated to the input x, and x2 is associated to the local x. In this case, y
would be declared with type • on true(x1) while the expression 0 when x would have type
• on true(x2). These two clock types beeing incompatible, the equation y = 0 when x
would be rightly rejected. This is the approach taken in Lucid Synchrone [CP03]. In
Vélus however we prefer a simpler clock-type system, in particular avoiding indirections
between variable names and clock variables. To reject invalid programs like the one
discussed above, Vélus simply rejects programs where local declarations shadow variables
already in scope. In particular, this precludes the case where x ∈ H and x ∈ H ′.

2.8 Semantics of Shared Variables

As the introductory example showed, the last value of a shared variable can be accessed
with the last operator. The semantic rules presented in figure 2.20 specify the behavior
of this operator. The stream associated to a last variable is read from the history, which
we denote H(last x). To support this, we generalize the Coq definition of histories
presented in line 2 to allow a key to be either a variable x or the last value of a variable
last x. This idea works just as well in Coq as it does for typing environments [LCTES11,
§3.2] and compilers [Pou10].

Each variable used with last must be declared with an initialization equation of the
form last x = e. It is this equation that constrains the stream associated to last x in
the history. This stream corresponds to the stream associated with x, delayed to the next
present cycle, and initialized by the stream of expression e. This behavior is mechanized
by applying the fby operator presented earlier to these two streams, giving a formal
definition that directly reflects the intuitive meaning of this construct.

2.9 Semantics of State Machines

We now present our mechanization of the semantics of state machines in Vélus. The
semantics of state machines were originally defined by translation [CPP05] and later by a
transition relation between instantaneous environments [CHP06, §4.1]. We draw on this
work to propose new rules based on histories, in the same style as the rules introduced
earlier for switch and reset.

46

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Slast
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.Slastd

2.9. Semantics of State Machines

The semantic rules for state machines are presented in figure 2.22. In the transition-
based semantics [CHP06, §4], a state machine is annotated with an entry state and a
boolean indicating if a reset is required. In our model, the state stream sts represents
this information for every cycle. At each cycle, the state stream may be absent, which
we denote ‹› as with synchronous values. Intuitively, this means that the whole state
machine is inactive. If the state stream is present, it contains a pair ‹C, b› where C is the
tag of the active state for this cycle, and b indicates if it must be reset.

The state stream is used as a control stream for the select operator that we now
introduce. Just as when was used for switch and mask for reset, the select function
samples the history and base clock for each state of the state machine. Its behavior is
actually equivalent to composing when and mask, as stated in lemma 2 below, where π1
and π2 denote the projections from state stream to tag and boolean streams respectively.
We believe it is clearer to express it directly as a coinductive operator, presented in
figure 2.22a. Values are only kept if (i) the tag on the state stream corresponds to the
expected tag, and (ii) the instance for this particular tag (counted by k′) is the expected
one (k). Using this definition, lemma 2 is easily proven by coinduction.

Lemma 2 (Correspondence of select, when and mask CoindStreams.v:3286)

selectC,k
k′ sts xs ≡ maskkk′ (whenC π2(sts) π1(sts)) (whenC xs π1(sts))

To illustrate how select is used to give a semantics to state machines, figure 2.21
presents an example automaton with weak transitions, entry by history and by reset, and
a possible trace of its execution. The chronogram displays the state-and-reset stream of
the state machine sts, and the stream associated with output o in history H, as well as
its first four samplings by select. During the first two cycles, the state machine is in state
Up, and the value of o increases. Since there have not been any reset yet, the parameters
of select are Up and 0. At the end of the second cycle, the second transition condition in
state Up is fullfilled: Down state is entered with a first reset. In the next cycles, select is
applied with parameters Down and 1. When Up is entered without reset, select is applied
with arguments Up and 0 once again. The execution continues in the same way: for each
state and reset, the history is sampled depending on the values of sts , which are given by
the transitions in the active branch. We now present the corresponding formal semantic
rules.

State machines with weak transitions The two rules for weak state machines are
presented in figure 2.22b. The first rule describes the behavior of a single state of a state
machine. It mimics the rule for local declarations presented in figure 2.19a, as each state
may declare local variables that may be used in weak transitions. The semantic rules
indicate that the transitions produce a state stream sts ; we detail the corresponding rules
later. This state stream is exposed by this first rule, as it needs to be used by the second
rule, which describes the behavior of a weak state machine as a whole.

In this second rule, select is lifted to histories and to the base clock, and used to
give the semantics of each state in a sampled context. Selecting is parameterized by

47

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.select_mask_when

2. Extending Vélus with Control Blocks

node updown(min, max : int)
returns (o : int)
let
automaton initially Up
state Up do
o = 0 fby (o + 1);
until o = max * 2 then Up

| o = max then Down
state Down do
o = 0 fby (o - 1);
until o = min continue Up

end

H(min) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 . . .
H(max) 1 1 1 1 1 1 1 1 1 1 . . .
π1(sts) U U D D U U U U D D . . .
π2(sts) F F T F F F T F T F . . .
(selectU,0 sts H)(o) 0 1 ‹› ‹› 2 3 ‹› ‹› ‹› ‹› . . .
(selectD,1 sts H)(o) ‹› ‹› 0 -1 ‹› ‹› ‹› ‹› ‹› ‹› . . .
(selectU,1 sts H)(o) ‹› ‹› ‹› ‹› ‹› ‹› 0 1 ‹› ‹› . . .
(selectD,2 sts H)(o) ‹› ‹› ‹› ‹› ‹› ‹› ‹› ‹› 0 -1 . . .
H(o) 0 1 0 -1 2 3 0 1 0 -1 . . .

Figure 2.21: Example trace of an automaton with weak transitions

state stream sts, which represent the state at the current instant. It is built from two
streams: the initial-state stream sts0 , computed from the initialization conditions, and
the next-state stream sts1 , computed from the transitions in the automaton states. Note
that the presence or absence of state streams is determined by the stream bs ′, calculated
by interpreting the clock annotation of the state machine ck . The inclusion of such an
annotation in the semantics is unfortunate, but we did not find a better alternative as,
unlike for the switch guard, there is no natural candidate to give the required rhythm.

State machines with strong transitions The rule for strong state machines differs
from those for weak state machines in three ways. First, since only a single initial state is
declared, the initial-state stream is simply defined with const. Second, state-local variables
cannot be used in strong transition guards so there is no need for a special treatment of
local scopes. Third, and most importantly, sts now specifies the entry-state stream. It is
used to control the activation of the strong transitions of each states, which determine
the current-state stream sts1. This current-state stream is used in turn to determine
which state applies its constraints to the global history. The value of the entry-state
stream corresponds to the current-state stream, delayed and initialized by the initial-state
stream. This models the expected behavior of strong transitions: they are checked first
to determine the active state which subsequently becomes the entry state.

48

2.9. Semantics of State Machines

selectC ,k
k ′ (‹› · sts) (‹› · xs) ≜ ‹› · selectC ,k

k ′ sts xs

selectC ,k
k ′ (‹C , F› · sts) (‹v› · xs) ≜ (if k ′ = k then ‹v› else ‹›) · selectC ,k

k ′ sts xs

selectC ,k
k ′ (‹C , T› · sts) (‹v› · xs) ≜ (if k ′ + 1 = k then ‹v› else ‹›) · selectC ,k

k ′+1 sts xs

selectC ,k
k ′ (‹C ′, b› · sts) (‹v› · xs) ≜ ‹› · selectC ,k

k ′ sts xs

(a) select CoindStreams.v:3253

∀x , x ∈ dom(H ′) ⇐⇒ x ∈ locs
G ,H +H ′, bs ⊢ blks G ,H +H ′, bs,Ci ⊢ trans ⇓ sts

G ,H , bs,Ci ⊢ var locs do blks until trans ⇓ sts

H , bs ⊢ ck ⇓ bs ′ G ,H , bs ′ ⊢ autinits ⇓ sts0 fby sts0 sts1 ≡ sts

∀i , ∀k , G , (selectCi ,k
0 sts (H , bs)),Ci ⊢ autscopei ⇓ (selectCi ,k

0 sts sts1)

G ,H , bs ⊢ automaton initially autinitsck [stateCi autscopei]
i end

(b) SautoWeak Lustre/LSemantics.v:306

H , bs ⊢ ck ⇓ bs ′ fby (const bs ′ (C , F)) sts1 ≡ sts

∀i , ∀k , G , (selectCi ,k
0 sts (H , bs)),Ci ⊢ transi ⇓ (selectCi ,k

0 sts sts1)

∀i , ∀k , G , (selectCi ,k
0 sts1 (H , bs)) ⊢ blksi

G ,H , bs ⊢ automaton initiallyC ck [stateCi do blksi unless transi]i end

(c) SautoStrong Lustre/LSemantics.v:328

G ,H , bs ⊢ e ⇓ [ys] bools-of ys ≡ bs ′

G ,H , bs ⊢ autinits ⇓ sts

sts ′ ≡ first-ofCF bs ′ sts

G ,H , bs ⊢ C if e; autinits ⇓ sts ′

sts ≡ const bs (C , F)

G ,H , bs ⊢ otherwiseC ⇓ sts

(d) Initial state

first-ofCr (T · bs) (st · sts) ≜ ‹C , r› · first-ofCr bs sts

first-ofCr (F · bs) (st · sts) ≜ st · first-ofCr bs sts

(e) first_of CoindStreams.v:3600

G ,H , bs ⊢ e ⇓ [ys] bools-of ys ≡ bs ′

G ,H , bs,Ci ⊢ trans ⇓ sts

sts ′ ≡ first-ofCF bs ′ sts

G ,H , bs,Ci ⊢ if e continueC trans ⇓ sts ′

G ,H , bs ⊢ e ⇓ [ys] bools-of ys ≡ bs ′

G ,H , bs,Ci ⊢ trans ⇓ sts

sts ′ ≡ first-ofCT bs ′ sts

G ,H , bs,Ci ⊢ if e thenC trans ⇓ sts ′

(f) sem_transitions Lustre/LSemantics.v:261

sts ≡ const bs (Ci , F)

G ,H , bs,Ci ⊢ ϵ ⇓ sts ;

Figure 2.22: Semantics of state machines

49

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.select
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.SautoWeak
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.SautoStrong
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.first_of
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.sem_transitions

2. Extending Vélus with Control Blocks

Semantics of transitions State streams are generated from the transitions of the
active state of each cycle, according to the rules of figure 2.22f. If no transition is activated,
that is if all transition conditions evaluate to false, then the current tag is emitted: the
state machine stays in the same state, which is not reset. Each transition is formed by a
boolean condition, a tag indicating which state should be entered, and either keyword
continue or then, indicating whether or not the state should be reset on entry. When
evaluating the condition of a transition, the corresponding boolean stream bs ′ is passed
to the coinductive operator first-of. When the condition is true, the state value is that
of the transition. Otherwise, it is that computed from the rest of the list of transitions.
This first-of function characterizes the order of priority of transitions. The semantic rules
used to calculate the initial state of a weak state machines have the same form.

Mixing weak and strong transitions The original proposition for state machines
[CPP05; CHP06] allows mixing weak and strong transitions in a single state machine.
Weak transitions determine the next entry state and strong transitions determine the
active state. It is possible to weakly enter a state only to exit it strongly the very next
instant. Besides the difficulty of understanding and explaining this behavior, it is not
clear whether the ephemeral state should be reset, and doing so complicates both the
semantic model and the compilation scheme. Scade 6 avoids this problem by using a
dynamic check that only allows at most one transition to fire per cycle [CPP17, §V.C.1].
Lucid Synchrone statically rejects state machines where a weak transition enters a state
with strong transitions.

Rather than further complicate the semantic rules and compilation scheme, we simply
forbid mixing weak and strong transitions in the same state machine. This approach was
inspired by Zélus [Pou10]. The ability to conditionally specify the initial states of weak
state machines is intended to compensate for the lost expressivity.

2.10 Partial Definitions

The drive_sequence node presented in section 1.2 contains a switch block, where the
definitions of mA and mB are missing in the second branch. The definitions of mA and mB are
partial [Pou06, §1.4.4]. Partial definitions are allowed for variables that are defined with
a last value. The informal semantics of a partial definition is that at each cycle, if the
active branch contains a definition for the variable, then it takes the value of its definition,
as expected. If the active branch does not contain a definition for the variable, then the
variable keeps its previous value. In other words, it is as if the equation x = last x was
implicitly added in each branch where x is not defined.

Formalizing this behavior in our semantic model is not obvious. Indeed, in our model,
each piece of syntax implies a corresponding constraint on the history of a node. A partial
definition means that the history is under-constrained. The missing constraint has to be
added elsewhere. This is accomplished by adding a premise to the switch semantic rule
seen in figure 2.23. To determine that a definition is partial, we use the function Def,
which gives the set of variable defined by a block or list of blocks. If a variable x is defined

50

2.11. Discussion and Related Work

G ,H , bs ⊢ e ⇓ [cs] ∀i , G ,whenCi (H , bs) cs ⊢ blksi

∀i , x ∈
⋃

j
(Def(blksj))\Def(blksi), (whenCi H cs)(x) ≡ (whenCi H cs)(last x)

G ,H , bs ⊢ switch e [Ci do blksi]i end

Figure 2.23: Implicit Completion for a switch Lustre/LSemantics.v:123

by at least one of the branches of a switch, it must be completed in any branch where
it is not defined. This means constraining the streams of x and last x in the sampled
environment of this particular branch to be equal. This is exactly the same constraint
that would apply the equation x = last x was explicitly added to this branch.

A premise of the same form is also added to the semantic rules for state machines
presented in figures 2.22b and 2.22c to allow for partial definitions in state machines.

2.11 Discussion and Related Work

The choices we have made in defining the semantics for Vélus were not made in isola-
tion. Verified compilers for other programming languages, and other specifications of
synchronous dataflow languages have made significantly different decisions. We detail
below the most relevant to our work, and discuss how their approaches may apply to
Vélus, and the effect they might have.

2.11.1 Mechanized Semantics for Verified Compilers

2.11.1.1 CompCert

The semantics of the source language of CompCert, Clight, are specified as a relational
big-step model [BL09]. Each judgment relates a syntactic element, an environment,
and a memory that may be updated by the evaluation of the syntactic element. For
instance, G,E ⊢ s,M

t⇒ out ,M ′ indicates that, under global environment G and local
environment E, statement s transforms memory M into M ′. out indicates the outcome
of the evaluation: the statement may execute normally, or modify the control-flow (break,
continue, return). This execution also produces a finite trace of observable events (side-
effects) t. In Coq, the semantic rules for these judgments are defined as an Inductive,
like in Vélus.

Since the language also contains loops and recursive calls that may not terminate, the
semantics also needs to encode divergence. To do so, they define additional coinductive
non-termination judgments [LG09]. For instance, G,E ⊢ s,M

T⇒ ∞ indicates that
statement s diverges, and produces a possibly infinite trace of events T . In Coq, these
definitions are given using CoInductive, which we use to define stream operators.

This semantic model is very relevant to imperative languages; we will see in section 5.1.3
that the semantic model for the Obc intermediate language is similar (although simpler).

51

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.sem_branch

2. Extending Vélus with Control Blocks

However, it does not apply directly to dataflow languages, where memory update is left
implicit. One point from this model that we could take inspiration from is the notion
of trace, which is used to model side effects. While Vélus does not have side effects,
they could be included via external CompCert C functions called from the Vélus code.
The side effects of these functions could then be modeled using a trace, following the
CompCert model. Since a dataflow program does not specify the order of evaluation of
equations, the order of side effects within a cycle could only be partially specified; this
would introduce non-determinism in the language, and complicate the proofs of semantic
correspondence. We are not sure yet how to treat these issues.

2.11.1.2 CakeML

The semantics of CakeML are based on functional big-step semantics [Owe+16; Tan+19].
They are essentially defined by an interpreter for the language, implemented by a pure
HOL [SN08] function. The function may return either a value or an error. To ensure
its termination, even for programs that may not terminate, the function takes an extra
fuel argument, that is a natural number which decreases at each recursive call; when it
reaches 0, the function returns a timeout error.

This style of semantic model simplifies some proofs of correctness for compilation
passes, as it allows for rewriting modulo reduction in proof terms, which is not true for
relational semantics. It would be interesting to see if this strategy would work in the
context of a dataflow synchronous language; this may not be true, because the functional
semantics for a synchronous dataflow language are less straightforward to define, as we
discuss below.

2.11.2 Possibly Finite Coinductive Streams

While our semantic model is relational, one might want to implement an executable
semantic model of our language. In that case, it would be necessary to explicitly model
runtime errors that can occur in the program. One way of doing so is to use streams that
can end when an error arises. A naive definition for such streams is presented below.

CoInductive ErrorStream A : Type :=
| Cons : A -> ErrorStream A -> ErrorStream A
| Error : ErrorStream A.

Listing 2.20: Naive Possibly Terminating Stream

A more interesting definition is proposed in [Pau09]. In this paper, Paulin-Mohring
discusses CPOs, an ordered structured which allows for the definition of well-founded
fixpoints. The coinductive definition of streams, reproduced below, offers both the usual
Cons, but also an Eps constructor, which only extends the stream without adding any
element. This means a function building a stream can always be productive by adding
Eps in front of a stream. In particular, with this representation, it is possible to write

52

2.11. Discussion and Related Work

a function filter: (A -> bool) -> Str A -> Str A that only keeps element respecting
a boolean predicate. This would not be possible with the coinductive types defined
above, as the function would not be productive when rejecting the head of the stream.
Moreover, it is possible to represent a terminating stream with an infinite sequence of
Eps constructors.

CoInductive Str A : Type :=
| Eps : Str A -> Str A
| Cons : A -> Str A -> Str A.

Listing 2.21: Streams as CPOs [Pau09]

Although this definition would be practical to define an executable semantic model,
it is not necessary when manipulating a relational model. Adding a second constructor
would add useless complexity in the proofs, and we chose to work with the previous
definition of Stream presented in listing 2.8.

2.11.3 Synchronous Semantics for Dataflow Languages

2.11.3.1 Reaction semantics

In our work, we see a synchronous dataflow program as a set of constraints between its
inputs and outputs. It can also be seen as a transition system. At every reaction, the
system receives inputs, calculates outputs based on these inputs and an internal state,
and updates this internal state. This type of reaction-based semantics for synchronous
dataflow languages has been extensively studied [Cas+87; CP98; CHP06]. In each of these
works, a program is associated to (i) an initial state and, and (ii) a transition function
that transforms a state and computes some values. This may be defined either as relations
between syntax, states and values, or as executable functions [Col+23], which provides
an interpreter for the language. We do not know if such a model would be practical to
mechanize the proof of correctness of source-to-source rewriting passes. Indeed, the shape
of such a proof is outlined in figure 2.24. An hypothetical compilation function rewrites
program P into P ′. The semantics of each of these two programs consists of an infinite
series of reactions, each rewriting the internal state. However, the states associated with
P and P ′ may not be equal, but only related by some bisimulation relation R. To prove
the correctness of the source-to-source rewriting, we would need to find and define this R
relation such that (i) the initial states St0 and St′0 are related by R, (ii) the transition
function preserves R, and (iii) if input states Sti and St′i are related by R, the values
produced during the reaction are indeed equal. A specific R relation would be necessary
for each rewriting step in the compiler. Although we have not tried this approach in
Vélus, and do not know how much work it would require in practice, we believe that
our approach of defining the semantics as a set of constraint, and proving that these
constraints are preserved by source-to-source rewriting is easier to implement.

53

2. Extending Vélus with Control Blocks

P P ′
rewriting

St0 St′0

St1 St′1

Stn St′n

R

R

R

Figure 2.24: Bisimulation for source-to-source rewriting

2.11.3.2 Synchronous stream semantics in Coq

The stream semantics that we adopt for the core dataflow language are inspired by the
definitions of [CP03, §3.2]. This semantic model has also been mechanized as a shallow
embedding of the Lucid Synchrone language in Coq [BH01]. Lucid Synchrone expressions
are represented directly by Coq terms that calculate sampled streams. The sampleStr
type (reproduced below) is parameterized by a boolean clock, which indicates explicitly
when the stream is present or absent. This dependent typing allows the authors to define
most of the streams operators presented in this section as total coinductive functions.

Inductive sampleElt (A : Type) : bool -> Type :=
| Abs : sampleElt A false
| Pres : A -> sampleElt A true.

Definition clock := Stream bool.

CoInductive sampleStr (A : Type) : clock -> Type :=
| sp_cons (c : clock) :

sampleElt A (hd c) -> sampleStr A (tl c) -> sampleStr A c.

Listing 2.22: Sampled streams from [BH01]

One advantage of this approach is that, as the title of the paper indicates, the clock
correctness property comes essentially “for free”. While this is an interesting idea, shallow
embedding does not seem practical in the context of a compiler, where we need to
manipulate the AST freely. Additionally, our experience of working with dependently-
typed streams is that statements and proofs are harder to write.

2.11.4 Modeling the Semantics of State Machines

2.11.4.1 StateCharts

The use of state machines for programming complex behaviors is rooted in a long history
that begins with StateCharts [Har87]. In this work, D. Harel introduces a visual language
for the specification of complex systems. These state machines are hierarchical: a state

54

2.11. Discussion and Related Work

can be refined by a number of sub-states. Two state machines can be composed in
parallel to represent two sub-systems running independently. Transitions between states
are triggered by external events, like the push of a button, and guarded by conditions
expressed on global variables. Additionally, processing a transition may execute an action,
like changing the value of a global variable. Such actions are not supported in our work,
where transitions only indicate when to exit a state. A state may be entered “by history”,
meaning that its sub-states will be restored to the configuration they had when the
state was last exited. This is the inspiration for transitions with the continue keyword.
[Har+87] establishes the operational semantics of this formalism as a transition system. In
[HN96], the authors propose executable, reaction-based semantics for an implementation
of StateCharts.

2.11.4.2 Stateflow

The Stateflow language [22] is used to specify controllers using StateCharts-like automata
in the Simulink [13] environment. Transitions in Stateflow are more complicated than in
Statecharts. A transition may lead not to a state, but to a junction of several transitions.
A compound transition succeeds only if a sequence of these simple transitions eventually
leads to a state. Actions on simple transitions can be set to trigger either if the simple
transition is taken, or if the whole compound transition succeeds. The semantics of
Stateflow have been studied by Hamon. [HR04] presents an operational model using
reaction rules. These reaction rules are defined inductively on the structure of the
automaton, represented textually as a program. When an event is received, the program
reacts by rewriting, and possibly updating the environment through actions. In [Ham05],
the author proposes a denotational semantic model, by representing the execution of an
automaton as transition functions. This model is also used as a basis for a prototype
compiler for Stateflow.

2.11.4.3 Lustre with modes: Mode-Automata

The idea of combining hierarchical state machines à la Statecharts with dataflow equations
à la Lustre came first in the Mode-Automata language [MR98; MR03]. The language
of states, or modes, is based on previous work by the same authors [MR01], itself based
on StateCharts, with the major simplification of removing multi-level arrows, where a
transition could specify which sub-state of a nested automaton is entered. Each mode
may contain dataflow equations written in a subset of the Lustre language. This subset
allows to define combinatorial computations and to access the previous global value of a
variable using the pre operator (which is equivalent to last). Explicit sampling operators
are not available.

The semantics of Mode-Automata are defined by translation. In [MR03], the authors
show that a well-formed mode-automaton with parallel or hierarchical composition can
be translated into a “flat” mode-automaton. In [MR98], they show that, in turn, any
flat mode-automaton can be translated into a dataflow Lustre program. This gives a
translation semantics to any well-formed mode-automaton.

55

2. Extending Vélus with Control Blocks

2.11.4.4 Lucid Synchrone and Scade 6

The state machines treated in Vélus are most similar to the ones implemented in Lu-
cid Synchrone. A first presentation of these state machines is given in [CPP05]. This
paper proposes a translation-based semantic model for state machines and other control
operators: the semantics of a high-level operator is exactly the semantics of lower-level
operators in which it is compiled. Our work is similar to this proposition: the semantics
of switch, for instance, is given using the when operator. We abstract somewhat from
this idea by basing our definitions on semantic operators, rather than syntactic constructs.
This eliminates some noise inherent to a compilation function that appear in the trans-
lation semantics of [CPP05]. A following paper, [CHP06] introduces a reaction-based
relational semantics for the same language. In this model, the reset of blocks is handled
by adding an extra bit k in reaction rules. k = 0 indicates that a block should react as if it
were in its initial state. In particular, the reaction rules for the fby and the initialization
arrow depends on this bit. This bit is set to 0 whenever a block needs to be reset. This
work on Lucid Synchrone, as well as the ReLuC prototype compiler, led to the addition
of state machines to the Scade 6 language [CPP17].

56

Chapter 3

Verified Dependency Analysis

A Vélus program is defined as a set of parallel equations under control blocks. The
order of equations in a node does not matter. Each equation may depend on any of the
streams defined by another. However, some dependencies are problematic. For instance,
the equation x = x + 1 does not admit any solution, although it is well typed, because
of its self-dependency. Conversely, the equation x = x admits an infinity of solutions.
Moreover, neither of these equations can be compiled to imperative code where a value
must be computed before it is assigned. This is also the case for any system of equations
containing a cycle of instantaneous dependencies, such as x = y + 1; y = x * 2. We say
that a dependency is instantaneous when it is not broken by a fby. For instance, in
x = x0 fby (x + 1), x depends instantaneously on x0, but not on itself.

In most compilers, programs that contain cyclic dependencies are detected statically
by a dependency analysis, and rejected. The usual approach [Hal+91; Bie+08] is to
analyse each node to calculate a graph of instantaneous dependencies between its inputs,
local and output declarations. In this chapter, we show how this approach is adapted to
Vélus source programs. In particular, we discuss the modifications necessary to handle
control blocks. After formally defining the dependency rules of the language, we present a
Coq implementation, and verification, of the algorithm used to check that the dependency
graph is acyclic. The remainder of the chapter is focused on proving properties of well-
formed programs. We first develop an induction scheme for acyclic programs. We then
apply it to prove two major properties of the semantic model: determinism and clock
correctness.

3.1 Dependency Graph of a Vélus Program

We first present the functions that build a dependency graph from a Vélus node. In a
node, several distinct variables may use the same name (for instance, in parallel local
declaration blocks, or in different branches of a state machines). To be able to distinguish
them, each declaration x in the node is associated to a unique label αx. Each label
becomes a vertex in the dependency graph. The existence of an edge αy ← αx in the

57

3. Verified Dependency Analysis

Γ(x) = αx

αx ∈ UsedInstΓ(x)[0]

α ∈ UsedInstΓ(e)[0] k < numstreams(if e then es0 else es1)
α ∈ UsedInstΓ(if e then es0 else es1)[k]

α ∈ UsedInstΓ(es0)[k]
α ∈ UsedInstΓ(if e then es0 else es1)[k]

α ∈ UsedInstΓ(es1)[k]
α ∈ UsedInstΓ(if e then es0 else es1)[k]

α ∈ UsedInstΓ(e)[k]
α ∈ UsedInstΓ(e :: es)[k]

α ∈ UsedInstΓ(es)[k]
α ∈ UsedInstΓ(e :: es)[(numstreams(e) + k)]

α ∈ UsedInstΓ(es0)[k]
α ∈ UsedInstΓ(es0 fby es1)[k]

α ∈ UsedInstΓ(es)[k ′] k < numstreams(f (es))
α ∈ UsedInstΓ(f (es))[k]

Figure 3.1: Instantaneously used labels Lustre/LCausality.v:31

graph indicates that the variable associated to αy depends instantaneously on the one
associated to αx. We define a function computing the set of labels used instantaneously
in an expression and then use it to establish the set of dependencies induced by blocks.

3.1.1 Analysis of Expressions

In order to detect dependency cycles in the node, we must first determine the set of vari-
ables used instantaneously in an expression. [Bie+08, Figure 3] proposes a similar function,
but it applies only to normalized nodes: for instance, the equation (x, y) = (0, x) would
be rejected by this analysis. We want to extend this function to non-normalized nodes.
We also want our function to return the labels of the variables used instantaneously, rather
than the variable names themselves. We therefore propose the function UsedInstΓ(e)[k]
which returns the labels of variables used instantaneously to define the kth stream of
expression e. In the abstract syntax, each variable is declared with a label. Environment
Γ carries these associations.

We present UsedInst using inference rules. Writing α ∈ UsedInstΓ(k)[e] means that
label α is used instantaneously to define the kth stream of e. This property is decidable:

∀Γk e α, α ∈ UsedInstΓ(k)[e] ∨ α /∈ UsedInstΓ(k)[e]

In our Coq mechanization, UsedInst is defined as an inductive relation, which is practical for
proofs. We also defined an efficient function to collect the sets of labels used instantaneously
in an expression. This function is proven complete with regards to the inductive definition.

Figure 3.1 presents a few interesting cases of the inductive definition of UsedInst. A
variable always uses its own label, which is recovered from the environment. For the

58

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.Is_used_inst

3.1. Dependency Graph of a Vélus Program

Γ(xi) = αxi

αxi ∈ DefΓ([xi]i = es)

(a) DefEq Lustre/LCausality.v:293

Γ(xi) = αxi α ∈ UsedInstΓ(es)[i]

Γ ⊢ [xi]
i = es | αxi

dep←−− α

(b) DepOnEq Lustre/LCausality.v:333

Figure 3.2: Dependencies for equations

compound expression if-then-else, we must consider all the labels used in the condition,
as well as the labels used for the kth stream of either branch. An auxiliary definition is
used to lift UsedInst to a list of expressions. In order to pick the right sub-expression
in the list, that is, the one generating the kth stream, it needs to consider the number
of streams numstreams(e) generated by each sub-expression. As discussed, for a fby, we
only consider the labels used in the left sub-expressions, as the ones used in the right are
not used instantaneously. The case of node instantiation is also interesting. We choose to
treat node instantiations as atomic: all outputs of the node depend instantaneously on
all inputs. This is an over-abstraction, as some outputs may only depend on some, or
none of the inputs. In section 3.6.1, we discuss other approaches to dependency analysis
that handle node instantiations modularly.

3.1.2 Dependencies induced by blocks

We now define the dependency constraints induced by each block. In the following, we
write Γ ⊢ blk | αy

dep←−− αx for “under environment Γ, αy depends on αx in block blk ”. In
order to define this judgment, we will need to refer to the labels defined by a block blk ,
which we collect with the function DefΓ(blk). Like UsedInst, we define this function using
inference rules, as it is defined as a relation in Coq.

Equations The labels defined by an equation are those associated to the variables
at left of the equation. Additionally, an equation induces dependencies between the
kth variable it defines, and the variables used instantaneously in the kth stream of the
expressions at right. For instance, in the equation (x, y) = (0, x fby z), x does not
depend on anything, and y depends solely on x. Figure 3.2 presents the formalization
of these intuitions. In the dependency rule, we use the function UsedInst to collect the
labels used instantaneously in the kth stream of the expressions.

Local Declarations Each local declaration block introduces new labels locs. They
should be accounted for when treating the blocks in the scope of the declaration. The
environment is extended with the append operation, +, defined as

∀x, (Γ + locs)(x) = αx ⇐⇒ (Γ(x) = αx ∨ locs(x) = αx)

The rules for defined labels and dependencies for a local declaration are given in
figure 3.3. They simply consists in looking recursively at the sub-blocks, after augmenting

59

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DefEq
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DepOnEq

3. Verified Dependency Analysis

α ∈ Def(Γ+locs)(blks)

α ∈ DefΓ(var locs let blks tel)

(a) DefScope1 Lustre/LCausality.v:279

(Γ + locs) ⊢ blks | αy
dep←−− αx

Γ ⊢ var locs let blks tel | αy
dep←−− αx

(b) DepOnScope1 Lustre/LCausality.v:318

Figure 3.3: Dependencies for local declarations

Γ ⊢ blks | α1
dep←−− α2

Γ ⊢ reset blks every e | α1
dep←−− α2

(a) DepOnReset1 Lustre/LCausality.v:344

αx ∈ UsedInstΓ(e)[0] αy ∈ DefΓ(blks)
Γ ⊢ reset blks every e | αy

dep←−− αx

(b) DepOnReset2 Lustre/LCausality.v:347

Figure 3.4: Dependencies for reset blocks

the environment. The labels defined in the local declaration escape its scope. This is
necessary to build a dependency graph global for the whole node.

Reset blocks Two types of dependencies are induced by a reset block, presented in
figure 3.4. First, there are the dependencies induced by the sub-blocks. Second, we must
take into account the labels used in the control expression. Indeed, the values of all
variables defined by the sub-blocks may be reset depending on the value of this expression.
This control dependency is expressed in the rule of figure 3.4b.

Switch blocks The treatment of switch blocks is more complex. Consider the node
of listing 3.1. In the first branch, y depends instantaneously on x. In the second branch, x
depends instantaneously on y. This apparent cycle is not a problem: the two branches are
exclusive, meaning that at each step, at most one of them is active to define the values
of x and y. Moreover, the compilation scheme that we present in section 4.8 produces
schedulable code for this program. As such, there is no reason to reject this node.

node switch_dep(b : bool) returns (x, y : int)
let
switch b
| true do x = 0 fby (x + 1); y = x * 2;
| false do y = 0 fby (y - 1); x = y * 2;
end

tel

Listing 3.1: Node with switched dependencies

To accept such definition, we need a special treatment in the dependency analysis.
Indeed, if we simply associate labels αx and αy to x and y, then the dependency analysis
would find a cycle between these two labels. Instead, we associate different labels to the
definitions of x and y in each branch. For instance, αxT would be the label associated

60

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DefScope1
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DepOnScope1
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DepOnReset1
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DepOnReset2

3.1. Dependency Graph of a Vélus Program

αb

αxT

αxF

αx

αy
T

αy
F

αy

Figure 3.5: Dependency graph for the node switch_dep

to the first definition of x, and αxF the one associated to its second. Reading variable x
in the first branch means using αxT , but not αxF , or αx. The global value of x depends
itself on its values local to branches. In other words, αx depends on αxT and αxF . All of
these values also depend on the value of the condition on the switch, which dictates when
they are active. The graph associated with node switch_dep is presented in figure 3.5. It
is indeed acyclic.

To encode these changes in labels, each branch of a switch is annotated, in the AST,
by a function σ that associates new labels to some variables. A static invariant not
presented here ensures that the labels renamed by σ are only the ones of variables defined
by the switch. Applying σ to an environment yields:

σ(Γ)(x) =

{
σ(x) if x ∈ dom(σ)
Γ(x) otherwise.

Figure 3.6 presents the dependency rules for a switch based on this idea. Two rules
are used for Def. The first one is usual and inspects the sub-blocks after having applied
σ to the environment. The second ensures that the “global” labels of defined variables,
that is the ones that were renamed by σ, are also considered defined by the switch.
For instance, in the example discussed above, αxT , αxF , and αx are all defined by the
switch. The first two dependency rules are similar to the ones for reset: they inspect the
dependencies of sub-blocks, as well as control dependencies between the control expression
and variables defined by the switch block. The last rule establishes, for each variable,
the dependency between its branch-local definitions and its global definition for the whole
switch.

The dependency rules for state machines are defined in the same manner, by replacing
the dependencies on the control expression by dependencies on the initialization conditions
and on the strong transitions. For concision, we do not present these rules here.

Last variables Consider the node below: x depends instantaneously on last x, which
does not depend on anything. Even if using last in this example is not particularly
useful compared to fby, the same kind of dependencies appear in more complex nodes like

61

3. Verified Dependency Analysis

α ∈ Defσi (Γ)(blksi)

α ∈ DefΓ(switch e [Ci doσi blksi]
i end)

(a) DefBranch1 Lustre/LCausality.v:284

x ∈ dom(σi) Γ(x) = α

α ∈ DefΓ(switch e [Ci doσi blksi]
i end)

(b) DefBranch2 Lustre/LCausality.v:287

σi(Γ) ⊢ blksi | α1
dep←−− α2

Γ ⊢ switch e [Ci doσi blksi]
i end | α1

dep←−− α2

(c) DepOnBranch1 Lustre/LCausality.v:324

αx ∈ UsedInstΓ(e)[0] αy ∈ DefΓ(switch e [Ci do blksi]i end)

Γ ⊢ switch e [Ci do blksi]i end | αy
dep←−− αx

(d) DepOnSwitch2 Lustre/LCausality.v:355

Γ(x) = αy σi(x) = αx

Γ ⊢ switch e [Ci doσi blksi]
i end | αy

dep←−− αx

(e) DepOnBranch2 Lustre/LCausality.v:327

Figure 3.6: Dependencies for switch blocks

drive_sequence presented in the introduction. In these cases, associating the same label
to x and last x would create a false dependency cycle. An extra label must therefore be
introduced to denote the instantaneous usage of the last value of a variable.

node last_dep(i : int) returns (x : int)
let
last x = 0;
x = last x + i;

tel

To support this, we extend the environment Γ. We note Γ(last x) for the label asso-
ciated with last x in Γ. Figure 3.7 presents the dependency rules for last variables. As
expected, the expression last x uses the label associated with last x in the environment.
An equations of the form last x = e defines the label associated with last x. This label
depends instantaneously on all labels used in e.

Partial Definitions The dependency analysis of partial definitions is more complicated.
Consider the register node below. The value of x is not declared in the second branch.
This program is valid, as the second branch is implicitly completed with x = last x. This
means that this program induces an implicit dependency from last x to x.

62

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DefBranch1
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DefBranch2
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DepOnBranch1
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DepOnSwitch2
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DepOnBranch2

3.2. Verified Graph Analysis

Γ(last x) = αlast x

αlast x ∈ UsedInstΓ(last x)[0]

(a) IUIlast Lustre/LCausality.v:35

Γ(last x) = αlast x

αlast x ∈ DefΓ(last x = e)

(b) DefLast Lustre/LCausality.v:297

Γ(last x) = αlast x αy ∈ UsedInstΓ(e)[0]
Γ ⊢ last x = e | αlast x

dep←−− αy

(c) DepOnLast Lustre/LCausality.v:339

Figure 3.7: Dependencies for last variables

node register(i : int; b : bool) returns (x : int)
let
last x = 0;
switch b
| true do x = i;
| false do
end

tel

Such implicit dependencies are more difficult to specify, analyse, and reason about. To
simplify our mechanization, we decided to not treat partial definitions in the dependency
analysis. In practice, this means that the compilation pass that completes implicit
definitions (discussed in section 4.5) runs before the dependency analysis.

3.2 Verified Graph Analysis

The dependency rules described in the previous section are used to build a dependency
graph for each node in the program. The graph contains a vertex for each causality label
in the node. Each dependency from αx to αy is represented by an edge in the graph.
In Coq, this graph is represented by a map associating each label to the list of labels
it depends on (its predecessors). Of course, this representation does not guarantee the
absence of dependency cycles in the graph.

Definition graph := Env.t (list ident).

Listing 3.2: Dependency graph as a map from a label to its predecessors

To characterize acyclic graphs, we introduce the inductive predicate AcyGraph V A,
where V is a set of vertices (PS.t in Coq), and A a set of edges, represented as a map
associating each vertex to its set of successors (Env.t PS.t in Coq). It is defined by the
three inductive rules presented in figure 3.8. An empty graph is acyclic. Adding a vertex

63

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.IUIlast
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DefLast
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.DepOnLast

3. Verified Dependency Analysis

AcyGraph ∅ ∅
AcyGraph V E

AcyGraph (V ∪ {α})A

AcyGraph V E αx, αy ∈ V αx ̸= αy αy ↛+
E αx

AcyGraph V (E ∪ {αx→αy})

Figure 3.8: Inductive representation of an Acyclic Graph AcyGraph.v:150

to a graph maintains its acyclicity. However, an edge from αx to αy may only be added
if αx and αy are distinct, and if there is no existing transitive return arc. This simple
constraint is enough to guarantee the acyclicity property: for any label α, there can be
no transitive arc from α to α. This is stated formally below.

Lemma 3 (Acyclicity of an AcyGraph AcyGraph.v:235)

if AcyGraph V E then ∀α, α↛+
E α

We now need to develop a function to analyse the dependency graph gr built from
a node and represented by the type in listing 3.2. If this function succeeds, it should
produce a witness of AcyGraph, which we can later use to reason about the node. We
implement, in Coq, a classic depth-first search algorithm to analyse the dependency graph.
To justify its correctness and termination, we use dependant types to encode invariants
of the algorithm. We use the Program extension [Soz07] which allows us to define the
algorithm in Gallina, Coq’s programming language, while handling proofs obligations
separately, with the tactic language Ltac.

We now describe this implementation, presented in listing 3.3. For readability, this
presentation employs set notations, monadic notations and implicit coercions from a
subset type to its value type. It is otherwise identical to the function implemented in our
mechanization. A call to dfs’ s x v recursively traverses the predecessors of x in the
graph gr (given as a fixed parameter). Input v represents a set of vertices already visited.
Input s represents the state of the search, that is, the set of vertices encountered during
the traversal. The subset type dfs_state specifies that s must be a subset of the vertices
of the dependency graph gr. At the end of its execution, dfs’ returns the new set of
visited vertices v’. It is a superset of v. We use the error monad to represent the possible
failure of the algorithm. The function fails if it encounters a vertex that was already in
s (line 14): this would mean there is a cycle in the graph, as this vertex was already
visited during this traversal. If x ∈ v, then we know that all the predecessors of x are
already in v, and we can simply return v (line 17). Otherwise, the list of predecessors
of x is read from gr (line 19), and dfs’ is called recursively on each of them (line 24)
with the extended state s’. If all recursive calls succeed, x is added to the set of visited
vertices, which is then returned.

64

https://velus.inria.fr/phd-pesin/velusdoc/Velus.AcyGraph.html#AcyGraph
https://velus.inria.fr/phd-pesin/velusdoc/Velus.AcyGraph.html#is_trans_edge_Irreflexive

3.2. Verified Graph Analysis

1 Variable gr : graph.
2
3 Definition dfs_state := { p | ∀ x, x ∈ p -> x ∈ gr }.
4 Definition num_remaining (s : dfs_state) : nat := | gr | - | s |.
5
6 Definition visited (s : PS.t) (v : PS.t) : Prop :=
7 (∀ x, x ∈ s -> x /∈ v)
8 /\ ∃ e, AcyGraph v e
9 /\ (∀ x, x ∈ v -> ∃ zs, find x graph = Some zs /\ (∀ y, y ∈ zs -> has_edge e y x)).

10
11 Program Fixpoint dfs’ (s : dfs_state) (x : ident) (v : { v | visited s v })
12 {measure (num_remaining s)} : res { v’ | visited s v’ /\ x ∈ v’ /\ v ⊆ v’ } :=
13 match mem x s with
14 | true => Error (msg "dependency cycle")
15 | false =>
16 match mem x v with
17 | true => OK (exist _ v _)
18 | false =>
19 match find x gr with
20 | None => Error (CTX x :: msg " not found")
21 | Some zs =>
22 let s’ := exist _ ({ x } ∪ s) _ in
23 match
24 fold_left (fun v w => do v’ <- dfs’ s’ w v; OK (exist _ v’ _)) zs (OK v)
25 with
26 | Error msg => Error msg
27 | OK v’ => OK (exist _ ({ x } ∪ v’) _)
28 end
29 end
30 end
31 end.
32
33 Definition dfs x (v : { v | visited ∅ v }) :
34 res { v’ | visited ∅ v’ /\ x ∈ v’ /\ v ⊆ v’ } :=
35 dfs’ ∅ x v.

Listing 3.3: Certifying graph analysis AcyGraph.v:619

At lines 13 and 16, we use the construction match/with rather than if/then/else
to handle a boolean condition. This is because, when using if/then/else, Program loses
some information about the value of the condition when generating proof obligations.

Termination Coq functions must always terminate. For recursive functions, this is
enforced by the guarded recursion criterium: one of the arguments must be of an inductive
type, and the function may only be called recursively on strict sub-terms of this argument.
The dfs’ function does not respect this criteria. To sidestep this issue, we use the
Program Fixpoint command, which allow us to prove the termination of the function by
providing a measure on one of the arguments. The measure returns a natural number
(type nat), which should be strictly decreasing on each recursive call. Since (N,≤) is well

65

https://velus.inria.fr/phd-pesin/velusdoc/Velus.AcyGraph.html#dfs

3. Verified Dependency Analysis

founded, this is enough to prove that the function terminates.
For this algorithm, we use the measure num_remaining, which computes the difference

between the number of vertices in the original graph gr, and the number of vertices in the
current traversal, represented by set s. Intuitively, it represents the maximum number of
vertices that could still be traversed by recursive calls to dfs’. This measure is indeed
decreasing, because, before each recursive call, we add vertex x to s. We know from the
tests at lines 13 and 19 that x was not previously in s, and that it is in gr, and so the
measure decreases by 1 at each recursive call.

Correctness The algorithm is correct if its success implies the existence of an AcyGraph
associated with the graph gr. It is difficult to reason a posteriori on a function defined
using Program Fixpoint, because the corresponding Coq term contains dependant types
and proofs justifying its termination. These terms often do not reduce properly, which
makes proofs cumbersome. Instead, we integrate the invariants of the algorithm into the
type of the function.

The invariant visited s v gives two guarantees. First, the set of visited edges v
and currently traversed edges s are disjoint. This is a technical detail necessary for the
proof. More importantly, it ensures the existence of a set of edges e forming an AcyGraph
together with v. This set of edges must be complete, in the sense that any edge in gr
going to a vertex of v should be represented in e. This ensures that v indeed forms an
(acyclic) prefix of the dependency graph. It is not necessary to compute the set of edges
of the AcyGraph being built. Indeed, on line 8, e is given as an existential, which can be
erased when extracting the function to OCaml code, and does not incur any runtime cost.

The type of dfs’ ensures that, given a set of visited vertices v, the algorithm, if
it succeeds, returns a set of visited vertices v’ which subsumes v, and contains the
traversed vertex x. The dfs function specializes dfs’, starting with an empty traversed
set. Iterating this function on every vertex in the dependency graph ultimately provides a
witness of AcyGraph that is complete with regard to the dependency graph, and therefore
to the analysed node. We say that the node is causal, as formalized below.

Definition 3 (Causal node Lustre/LCausality.v:585)

node_causal n iff ∃V E, AcyGraph V E ∧ (∀αxαy,⊢ n |αy
dep←−− αx =⇒ αx→E αy)

Complexity This algorithm is time-efficient as each vertex is only traversed once before
being placed in the visited set. We have not tried to verify the running time complexity
of this algorithm, as we were more interested in verifying its functional correctness. We
believe that, after instrumenting the code, it would be easy to prove that this algorithm
runs in linear time with respect to the number of edges in the graph.

3.3 Induction Schemes for Causal Programs

In the following sections, we will be interested in proving properties of the semantic model
for programs that do not contain dependency cycles. To do so, we first use the definitions

66

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.node_causal

3.3. Induction Schemes for Causal Programs

TopoOrder (AcyGraph V E) []

TopoOrder (AcyGraph V E) lord
αy ∈ V ¬αy ∈ lord

(
∀αx, αx→+

E αy =⇒ αx ∈ lord
)

TopoOrder (AcyGraph V E) (αy :: lord)

Figure 3.9: Topological Ordering of Vertices of a graph AcyGraph.v:690

of the two previous sections to build two induction schemes that will form the backbone
of these proofs.

3.3.1 Induction on the labels of a node

Suppose that we want to establish a property of the semantic model. In general, we can
express such a property as a predicate on streams Pstream : Stream svalue -> Prop
that should hold for each stream associated to a syntactic element of the program by the
semantic model. For now, consider that there is a global history H that associates every
variable in a node to a stream; we will later see how to adapt this approach to support
histories associated with local declarations. The Pstream property should hold for all
streams in H. As a first approximation, we could state this as:

if G,H, bs ⊢ blk and H(x) ≡ vs then P_stream vs

How should we prove that this is true for every variable? Consider the equation
y = x + 1. In order to prove any interesting property of the stream associated with y, we
need to know about the stream associated with x. More generally, the stream associated
with a variable y depends, in the semantic sense, on the streams associated with the
variables that y depends on, in the syntactic sense defined in the previous sections. For a
node with no dependency cycle, we may prove Pstream for every named stream in the
node by following these dependencies: we first prove Pstream for a named stream that
does not depend on any other, then for a second one that only depends on that first one,
and so on by induction. We now discuss the details of this approach.

If a node n is node_causal, then, by definition, it can be associated with an acyclic
graph AcyGraphV E. To facilitate inductive reasoning, we extract a topological ordering of
the vertices from this graph, that is a list where each vertex only depends on vertices that
appear earlier in the list. In figure 3.9, we present an inductive definition for this order,
where the last premise of the second rule takes into account transitive edges/dependencies.
This premise can be weakened to only take into account immediate edges (αx→E αy).
We have proven that this definition would be equivalent, but it is less convenient in
mechanized proofs. The lemma below establishes that, for any AcyGraph, there exists at
least one complete topological ordering of the vertices.

67

https://velus.inria.fr/phd-pesin/velusdoc/Velus.AcyGraph.html#TopoOrder

3. Verified Dependency Analysis

Lemma 4 (Existence of a Topological Ordering AcyGraph.v:921)

iff AcyGraph V E

then ∃lord , (∀αx ∈ V, αx ∈ lord) ∧ TopoOrder (AcyGraph V A) lord

Recall that, in a dependency graph, each vertex corresponds to one label in the node.
The proof proceeds by induction over the topologically ordered list of labels. We pose

Pvar Γ αx := ∀x vs,Γ(x) = αx =⇒ H(x) ≡ vs =⇒ Pstream vs

Since reasoning uses labels rather than variables, PvarΓαx recovers the variable associated
with label αx, and ensures that Pstream holds for the corresponding stream. This
indirection complicates our proofs slightly, but is necessary to handle the full expressivity
of the language.

The induction principle on the ordered list of labels is presented in lemma 5. As
expected, it applies only to causal nodes. Function locals collects the associations between
local variables of the block and their labels. This includes the labels for last variables,
and the labels local to a switch branch. The last premise gives the shape of the inductive
hypothesis: for each label αy, if Pvar Γ holds for every predecessor of αy, then Pvar Γmust
hold for αy. Applying the induction shows that Pvar Γ holds for any label of the node.

Lemma 5 (Induction on labels of a causal node)

if node_causal (node f(ins) returns (outs) blk)

and Γ = ins+ outs + locals blk

and (∀αy, (∀αx, (ins + outs) ⊢ blk | αy
dep←−− αx =⇒ Pvar Γ αx) =⇒ Pvar Γ αy)

then (∀αy, Pvar Γ αy)

We now sketch the proof of this lemma. By the definition of node_causal, the
first hypothesis implies the existence of an acyclic graph AcyGraph V E from which, by
lemma 4, we extract a topological order of labels TopoOrder (AcyGraph V E) lord . The
set of vertices V and the list of labels lord correspond exactly to the set of labels in Γ.
Proving that Pvar is true for every label in Γ is therefore equivalent to proving it for every
label in lord . The goal becomes ∀αy, αy ∈ lord =⇒ Pvar Γ αy.

We use the usual induction mechanism of Coq on the witness of TopoOrder. The initial
case is trivial: Pvar Γ is obviously true for every label in the empty list. The inductive
case proceeds as follows. We have TopoOrder (AcyGraph V E) (αy :: lord). By induction,
Pvar Γ holds for all labels in lord . To prove that it holds for all labels in αy :: lord it
remains to prove Pvar Γ αy. Suppose αx, a label on which αy depends. By the definition
of node_causal, we know that there is an edge from αx to αy in E. By the definition of
TopoOrder, αx appears in lord . By the inductive hypothesis, Pvar Γ αx holds. Therefore,
the last premise of the lemma applies, which concludes the induction.

The lemma on the next page is an alternative scheme which turns out to be more
practical than lemma 5. It manipulates the predicate Pvars which applies to lists of labels.

68

https://velus.inria.fr/phd-pesin/velusdoc/Velus.AcyGraph.html#has_TopoOrder

3.3. Induction Schemes for Causal Programs

The predicate must be true for the empty list. In the inductive case, there is one more
hypothesis: for every label αx on which the head label αy depends, αx appears in the tail
of the list. The conclusion of this lemma is that Pvars holds for a permutation of the list
of all labels in the node.

If Pvars simply consists in lifting Pvar to the labels in the list, then lemma 5 is a
corollary of lemma 6.

Lemma 6 (Induction on the list of labels of a causal node Lustre/LCausality.v:2580)

if node_causal (node f(ins) returns (outs) blk)

and Pvars []

and (∀lord αy,Pvars lord =⇒
(∀αx, (ins + outs) ⊢ blk | αy

dep←−− αx =⇒ αx ∈ lord) =⇒
Pvars (αy :: lord))

then ∃lord ,Permutation lord (ins + outs + locals blk) ∧ Pvars lord

3.3.2 Induction on the syntax of blocks and local declarations

Until now, we have reasoned globally about a node, with a single environment Γ that
associates labels to variable names, and a single history H that associates variable names
to streams. However, Vélus programs may contain arbitrarily nested local declarations.
Since labels are globally unique, and escape their scope, we can still work with a single Γ
that takes into account every label in the node. This is not so simple for histories. As
shown previously in figure 2.19a, the semantics of the blocks under a local declaration
is relative to an extended history H +H ′. This local history H ′ associates each local
variable to a stream, and is quantified existentially in the rule. In a sense, it is “hidden”
by this rule, and it is therefore not possible to reason globally on the content of H ′. We
now detail two solutions we have considered for this problem, and explain why the first
fails.

Globalizing the History A first solution would be to expose the local histories globally.
Practically, this would mean defining a new version of the semantic model, with the
rule for local declarations of figure 2.19a changed to the one presented in figure 3.10, at
left. Since variable names are not necessarily unique in the node, we must change the
history so that, instead of associating variable names to streams, it associates labels to
streams. This level of indirection has a cost. As the labels are not directly accessible
in the syntax, an environment needs to be added to the semantic rule. For instance,
the rule for variables, presented in figure 3.10 at right, must be modified to recover the
label αx associated with variable x before reading the stream associated with αx in the
global history. These changes need to be propagated to the rest of the rules, and we
therefore have to define a new, globalized version of the whole semantic model defined in
the previous chapter.

69

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.node_causal_ind

3. Verified Dependency Analysis

G,H, bs,Γ ⊢glob blks

G,H, bs,Γ + locs ⊢glob var locs let blks tel

Γ(x) = αx H(αx) ≡ vs

G,H, bs,Γ ⊢glob x ⇓ [vs]

Figure 3.10: Alternate rule for local declarations with globalized histories

The additional definitions are not the only problem. To use this alternative semantic
model, we must first derive it from the original semantic model. When trying to build
the globalized semantics of blocks from the (local) semantics of blocks, we would need to
prove the conjecture below. It states the existence of a globalized history H ′ that gives a
globalized semantics to the block blk , and that corresponds to the initial history H.

Conjecture 1 (Globalizing the semantics of a block)

if G,H, bs ⊢ blk

then ∃H ′, (G,H ′, bs,Γ ⊢glob blk)
∧ (∀x αx,Γ(x) = αx =⇒ H(x) ≡ vs =⇒ H ′(αx) ≡ vs)

Unfortunately, it is not so easy to inductively construct the globalized history H ′.
Consider the case of the reset block, whose semantic rule was presented in figure 2.16.
The last premise states that ∀k,G,maskkrs (H, bs) ⊢blks, that is, the semantics of the
underlying block can be given under an infinite family of instances of H. Applying our
hypothesis inductively on each history of this family, we would have the following result:

∀k,∃H ′
k, (G,H ′

k, bs,Γ ⊢glob blks)

∧ (∀x αx,Γ(x) = αx =⇒ maskkrs H (x) ≡ vs =⇒ H ′
k(αx) ≡ vs)

There is a different H ′
k for each instance of H. In order to give a semantics to the

reset block, we need to build a unique history H ′ of which all H ′
k are instances (formally,

∀k,H ′
k ≡ maskk rs H ′). This is only possible if the streams in each H ′

k “respect” the
masking, that is, they are all of the form maskk rs xs . Although this is a corollary of the
clock-correctness property, reasoning on causal nodes is necessary to prove it. This cycle
defeats the approach.

Instrumenting the semantic model The globalization approach tried to move the
local histories “out” of the local scopes, so as to state the Pstream property globally. The
alternative that we now present consists in reasoning more locally about Pstream, while
still using a global induction scheme. It is implemented by introducing an “instrumented”
semantic rule for local declarations, shown in figure 3.11. It takes an extra parameter,
lord , which corresponds to the ordered list of labels manipulated by induction when
proving lemma 5. Compared to the original rule for local declarations, it has one extra
premise. It specifies that, for each label αx in lord , Pvar holds. By the definition of Pvar,
this means that, for each variable x associated with αx in the local declarations locs,
Pstream is true for the stream associated with x in the local history H ′.

70

3.3. Induction Schemes for Causal Programs

∀x, x ∈ dom(H ′) ⇐⇒ x ∈ locs G,H +H ′, bs, lord ⊢P blks
∀αx, αx ∈ lord =⇒ Pvar locs αx

G,H, bs, lord ⊢P var locs let blks tel

Figure 3.11: Instrumented semantic rules for local declarations

These changes do not affect the existing parameters of the judgment. Therefore, the
semantic rules for variables, and more generally for expressions, do not need to be changed.
We only need to redefine the semantic rules for blocks.

Instrumented semantic and induction on labels The instrumented semantic model
is used as part of the Pvars predicate of lemma 6. The initial case is easy to prove: if lord
is empty, the third premise of figure 3.11 holds trivially; therefore, a non-instrumented
semantics implies the existence of an instrumented semantics, as stated below.

Lemma 7 Existence of an instrumented semantic model

if G,H, bs ⊢ blk then G,H, bs, [] ⊢P blk

The proof for the inductive case proceeds by induction on the syntax of the block, to
find the equation defining the variable y associated to the label αy at the head of lord .
Proving that Pstream holds for the stream associated to αy requires reasoning on the
expression defining the value of y, as explained below.

3.3.3 Induction on the kth stream of an expression

Consider the equation (x1, ..., xn) = es. The stream associated to xk is the kth stream
produced by es. To establish Pstream for this stream, we must first reason by induction
on the kth stream generated by es. This is the purpose of the induction principle we
develop in this section. We pose

Pexp e k := ∀vs, G,H, bs ⊢ e ⇓ vs =⇒ Pstream (vs[k])

This predicate states that Pstream holds for the kth stream of an expression e. We also
define a secondary predicate, Pexps es k, which lifts Pexp to a list of expressions. The idea
is the following: if Pvar Γ holds for all variables used instantaneously to define the kth
stream of expression e, then Pexp e k must hold. The induction scheme corresponding to
this intuition is presented on the next page. It is derived directly from the definition of
UsedInst presented in figure 3.1.

71

3. Verified Dependency Analysis

Lemma 8 (Induction on the kth stream of an expression Lustre/LCausality.v:2450)

if Pexp c 0

and ∀x αx,Γ(x) = αx =⇒ Pvar Γ αx =⇒ Pexp x 0

and ∀k,Pexp e 0 ∧ Pexps es0 k ∧ Pexps es1 k =⇒ Pexp (if e then es0 else es1) k

and ∀k,Pexps es0 k =⇒ Pexp (es0 fby es1) k

and (∀k′,Pexps es k′) =⇒ ∀k,Pexp f(es) k
and . . .

then ∀e k, (∀αx, αx ∈ UsedInstΓ(e)[k] =⇒ Pvar Γ αx) =⇒ Pexp e k

The conclusion of this scheme states that Pstream is valid for the kth stream of any
expression, if all labels used instantaneously in this expression to define the kth stream
satisfy Pvar. Each premise of this lemma represents either a base case, or an inductive
step. Using this induction scheme requires proving these premises for a property Pstream.
We have only presented here a few of the premises: there is one for each constructor in
the syntax of expressions. Pstream should always be satisfied by the stream generated by
a constant expression. For a variable x, if Pvar is satisfied for the label associated with x,
then Pstream should be satisfied for the stream associated with the variable. By the
definition of Pvar, this is immediate. For the inductive if-then-else step, the available
hypotheses are that Pexp holds for the condition stream, as well as the kth streams of both
alternatives. Proving this premise amounts to proving that the case semantic operator
preserves Pstream.

Following the definition of UsedInst, in the fby case, the only hypothesis of the premise
is that Pexp holds for the kth stream of the left sub-expressions. This is because the right
sub-expressions may depend arbitrarily on other streams. Therefore, fby should preserve
Pstream even if only its left operand respects Pstream:

∀vs0 vs1 vs,Pstream vs0 =⇒ fby vs0 vs1 ≡ vs =⇒ Pstream vs

The last interesting case is the one of a node instantiation. Since we impose that all
outputs of a node depend instantaneously on all inputs, the inductive case assumes that
Pexp holds for each sub-expression used as a parameter, and concludes that it holds for
each stream generated by the instantiation. Establishing it requires proving that the
instantiated node also preserves the Pstream property, which we can state as:

Pnode f xs ys := (∀k,Pstream xs[k]) =⇒ G ⊢ f(xs) ⇓ ys =⇒ (∀k,Pstream ys[k])

In practice, we can prove that Pnode holds for every node in a program by induction on
the list of nodes. Indeed, typing invariants ensure that each node only instantiates the
nodes defined earlier in the list.

Concluding the induction on expressions also concludes the induction on blocks, labels,
and finally the induction on nodes. The final result is that Pnode is valid for all nodes in
the program. In the following sections, we describe two core properties of the semantic
model, and how they can be established using the combination of inductions we just
described. We outline how this general scheme needs to be adapted to fit these proofs.

72

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LCausality.html#LCAUSALITY.exp_causal_ind

3.4. Determinism of the Semantic Model

3.4 Determinism of the Semantic Model

The semantics of a node is deterministic if, for a given list of input streams xs, only one
list of output streams ys is possible. Formally, we can state this as theorem 2, where the
equivalence relation on streams ≡ is lifted to lists of streams.

Theorem 2 (Determinism Lustre/LSemDeterminism.v:2722)

if node_causal G(f)

and G ⊢ f(xs) ⇓ ys1 and G ⊢ f(xs) ⇓ ys2

then ys1 ≡ ys2

The theorem applies only to causal nodes. Indeed, as discussed, the equation x = x
admits any stream for x, and is obviously not deterministic.

To prove theorem 2, we need to adapt the induction schemes described in the previous
section. First, we are concerned with not one semantic model, but a pair of semantic
models. Indeed, each of the two semantic hypotheses of the theorem yields a different
history. The goal of the proof is to establish that these histories are actually identical.
The Pstream, Pvar, Pexp, . . . predicates described in the previous sections must therefore
be instantiated with predicates that relate two streams, list of streams, histories, . . .

The predicate on streams must be preserved by fby, even in the absence of an induction
hypothesis for the right operand. If we were to use the equivalence relation on streams ≡
directly, this would translate to:

xs1 ≡ xs2 =⇒ fby xs1 ys1 ≡ vs1 =⇒ fby xs2 ys2 ≡ vs2 =⇒ vs1 ≡ vs2

which is simply not true: streams vs1 and vs2 contain, respectively, elements from ys1
and ys2. If these streams are completely unrelated, we cannot prove that vs1 and vs2 are
equal.

We solve this problem by introducing an equivalence of two streams up to n. Intuitively,
xs ≡n ys means that the first n values of xs and ys correspond. This equivalence is
defined inductively below.

Definition 4 (Stream equivalence up to n CoindStreams.v:310)

xs ≡0 ys x · xs ≡n+1 y · ys iff x = y and xs ≡n ys

This partial equivalence is implied by the stronger equivalence ≡. Conversely, quanti-
fying n universally recovers the original equivalence from the partial equivalence.

Lemma 9 (Correspondance of partial and total equivalence CoindStreams.v:335)

(∀n, xs ≡n ys) iff xs ≡ ys

73

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemDeterminism.html#LSEMDETERMINISM.det_global
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.EqStN
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.EqStN_EqSt

3. Verified Dependency Analysis

This new definition suffices to prove lemma 10. It states that the fby relation preserves
the equivalence up to n+ 1 of the left operand, given equivalence up to n of the right
operand. This lemma is easily proven by coinduction on the definition of the fby and fby1
predicates.

Lemma 10 (Equivalence up to n for fby Lustre/LSemDeterminism.v:734)

if xs1 ≡n+1 xs2 and ys1 ≡n ys2
and fby xs1 ys1 ≡ vs1 and fby xs2 ys2 ≡ vs2
then vs1 ≡n+1 vs2

This new equivalence relation, and lemma 9, structure the proof of determinism. We
reason (globally) by induction on n, proving that every node is deterministic up to n.
The corresponding Pnode predicate is therefore defined as follows:

Pnode n f xs1 ys1 xs2 ys2 := xs1 ≡n xs2 =⇒
G ⊢ f(xs1) ⇓ ys1 =⇒ G ⊢ f(xs2) ⇓ ys2 =⇒
ys1 ≡n ys2

The proof that this Pnode holds for every node in the program proceeds as described in
the previous sections. The instrumented semantic model described in figure 3.11 needs to
be adapted and takes a pair of histories and base clocks as parameters. The instrumented
judgement has the form G,H1, H2, bs1, bs2, lord ⊢P blk. The resulting Coq proof contains
a lot of administrative details, but no major surprise. It consists in around 2700 lines of
Coq script to state and prove all the invariants necessary to establish theorem 2.

3.5 Clock Correctness

The clock correctness property is a core prerequisite to the proof of compiler correctness.
It states that “the sampling of generated stream corresponds with the clock-type anno-
tations”. Formally, we define this property by first defining the semantics of clock-type
annotations, as presented in figure 3.12a. Under a given history and base-clock stream,
the interpretation of a clock type produces a (boolean) clock stream. The stream pro-
duced by the base clock is the base-clock stream of the context. For a sampled clock
ck on C(x), the underlying clock ck is interpreted, and the resulting stream is sampled by
the when operator, according to the stream associated to the condition x. This definition
corresponds to the semantics of when expressions.

For any syntactic element annotated by a clock type, the stream of the clock type
should be equal to the clock of the stream produced by the syntactic element. The clock
of a stream is given by the clock-of function presented in figure 3.12b. Presences are
associated to true and absences to false. The rule for annotated variables presented in
figure 3.12c is an example of the kind of clock correctness judgement we want to express.
If variable x is associated to stream vs in the history, we expect the clock-type annotation

74

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemDeterminism.html#LSEMDETERMINISM.fby_det_Sn

3.5. Clock Correctness

H , bs ⊢ • ⇓ bs

H , bs ⊢ ck ⇓ bs1 H (x) ≡ vs whenC bs1 vs ≡ bs2

H , bs ⊢ ck onC (x) ⇓ bs2

(a) sem_clock CoindStreams.v:1851

clock-of (‹› · vs) ≜ F · clock-of vs
clock-of (‹v› · vs) ≜ T · clock-of vs

(b) abstract_clock CoindStreams.v:1777

H (x) ≡ vs H , bs ⊢ ck ⇓ (clock-of vs)

H , bs ⊢ck x ck ⇓ vs

(c) sc_var Lustre/LClockCorrectness.v:169

Figure 3.12: Semantics of clock-type annotations

ck associated to x to produce stream clock-of vs. The same idea applies to expressions
and node instantiations.

As for semantic determinism, our proof of this property assumes the absence of
dependency cycles. Indeed, the equation x = x admits any stream, including streams
that do not correspond to the declared clock type of x. The clock correctness theorem
for nodes, stated in theorem 3 below, only holds for causal, well-clocked nodes. It states
that, if such a node has a semantics relating input streams xss to output streams yss,
and if the clock streams of xss correspond to the declared clocks of the inputs of the
node, then the clock streams of yss correspond to the declared clocks of its outputs. The
semantics of the clock-type annotations of inputs and outputs may be given in any history
H that associates the correct streams to the inputs and outputs of the node. Indeed, the
clock-type annotations of the outputs only depend (syntactically) on input and output
variables of the node.

Theorem 3 (Clock Correctness Lustre/LClockCorrectness.v:2610)

if G ⊢wc f and node_causal G(f)

and G ⊢ f(xss) ⇓ yss

and G(f) = node f([xi : ck i]i) returns ([yj : ck ′j]
j) blk

and ∀i, H, (base-of xss) ⊢ck xckii ⇓ xss i and ∀j, H(yj) ≡ yssj

then ∀j, H, (base-of xss) ⊢ck yjck
′
j ⇓ yssj

The proof of this theorem is more straightforward than is the proof of determinism.
Indeed, this time, fby does preserve the clock-correctness property: lemma 11 states that
the clock-stream of the stream produced by fby is the same as the clock stream of its
left operand. This is a direct consequence of the definition of the fby: in essence, the
operator “forces” its two operands to have the same clock, which means it is not necessary
to check the clock of the right operand. This idea was first exploited in the first version
of the clock-correctness proof for the core dataflow language [Jea19]. We apply this result

75

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.sem_clock
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.abstract_clock
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClockCorrectness.html#LCLOCKCORRECTNESS.sc_var
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClockCorrectness.html#LCLOCKCORRECTNESS.sem_node_sem_node_ck

3. Verified Dependency Analysis

to prove the fby case of lemma 8. The clock-typing rule for fby states that the k-th
clock type of e0 fby e1 is equal to the k-th clock-type annotation of e0. Using this fact,
and the lemma described above, we can prove that, if the k-th stream produced by e0
corresponds to the interpretation of the k-th clock-type annotation of e0, then this is also
the case for the k-th stream produced by e0 fby e1.

Lemma 11 (fby preserves clock streams Lustre/LSemantics.v:2235)

if fby xs ys ≡ vs then clock-of vs ≡ clock-of xs

Most other inductive cases of lemma 8 are proven by a similar reasoning: we establish
that the syntactic relation between clock-type annotations induced by clock-typing rules
correctly reflects the relations induced by semantic stream operators.

The most difficult case is for node instantiations, because of the node subsampling
dependencies described in section 2.4.4. The proof of this case proceeds as follows:
consider the expression f(es). By the induction hypothesis on expressions, we know that
all the streams xss of the argument expressions es have the correct clock stream. We also
know, by induction on the list of program nodes, that node f preserves clock correctness,
as stated in theorem 3. To use this hypothesis, we have to prove that the input streams
xss correspond to the declared input clock types of f (fourth premise of the theorem).
This is not trivial, because the clock-type annotations of expressions es are not the same
as the input clock types (indeed, they are instantiated, see the clock-typing rules for node
instantiations in figure 2.12c). The same difficulty arises when proving that the output
streams yss of the node, which we know correspond to the declared output clock types
of the node (conclusion of the theorem), also correspond to the clock types of the node
instantiation. These proofs are even more complicated when dealing with a resettable
node, because the mask affects sampling.

Despite these complications, the rest of the proof proceeds as expected, and theorem 3
can be proven without any other surprise. In the following chapter, we will see how this
result is crucial in proving the correctness of compilation, and how it affects the overall
“proof architecture” of the compiler.

3.6 Discussion and Related Work

3.6.1 Causality Type Systems for Dataflow Languages

The dependency analysis implemented in Vélus has a major limitation: it considers node
instantiations as atomic, where all inputs have to be determined before output can be
computed. This requirement does not stem from the semantic model. Indeed, consider
the program in figure 3.13. It is perfectly deterministic: its output is always equal to its
input. However, this program would be refused by our compiler because, syntactically,
the use_plumbing node contains a cycle: b depends immediately on itself.

To accept such a program, we would need two adaptations. The first is a modular
causality analysis that can express the finer grained dependencies between node inputs

76

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSemantics.html#LSEMANTICS.ac_fby1

3.6. Discussion and Related Work

node plumbing(x, y : int) returns (z, t : int)
let
(z, t) = (x, y);

tel

node use_plumbing(a : int) returns (c : int)
var b : int;
let
(b, c) = plumbing(a, b);

tel

plumbing
x

y

z

t

use plumbing

a

c

Figure 3.13: A node with a dependency cycle

and outputs. This problem has been attacked by introducing type-based modular analyses.
In such a system, the plumbing node would have type ∀α1 α2, (α1 × α2) → (α1 × α2).
There are several ways to encode the dependencies between variables using types. [CP01]
uses row-polymorphism. This approach was first implemented in Lucid Synchrone. Each
expression is given a “causality type” ϕ with rows indicating the variables on which the
expression depends. For instance, in the plumbing node, the type scheme given above
would be instantiated with α1 = {a : p; b : a; ρ1} and α2 = {a : p; b : p; c : a; ρ2},
where p indicates that a variable is used (present), a indicates that a variable is not used
(absent), and row-variables ρ allow the type to be further specialized. This instantiation is
well typed, because (i) a is present in α1 and b is present in α2: this respects the variable
rule, and (ii) b is absent in α1 and c is absent in α2: this respects the equation rule.
Another approach is presented in [HSCC14]. A label representing a date is associated
to each syntactic element in the program. These labels abstract away from the named
variables; this was the inspiration behind the labels in Vélus. Each equation induces
precedence constraints between labels. In use_plumbing, if αa, αb and αc are the labels
for a, b and c respectively, then the type scheme is instantiated with α1 = αa and
α2 = αb. The equation induces the precedence constraint αa < αb and αb < αc. These
constraints are valid because they define a strict partial order. This system is implemented
in Zélus [Pou10], and has also inspired the system used in Scade 6 [CPP17].

The second adaptation required to support richer node instantiations is to the com-
pilation scheme. Indeed, the compilation of nodes implemented in Vélus is strictly
modular [Bie+08]: each node is compiled into a single imperative step function. With
this technique, the node use_plumbing cannot be scheduled, as y needs to be calculated
before the call. Two solutions exist to compile such programs: the simplest is to inline
the definitions of nodes that display such cycles; this is done in Scade 6. This results in
schedulable code, and may, coupled with other optimizations like constant propagation,
generate more efficient code. However, this approach can also lead to code duplication.
An alternative approach, proposed in [PR09], is to generate not one, but several step
functions for a node. The calls to these step functions may then be scheduled appropriately,
depending on the requirements of the caller. Decomposing of a node into the maximal

77

3. Verified Dependency Analysis

number of step functions is, in the general case, NP-hard. A simplified algorithm that
works for most real-world program is proposed. When it is not sufficient, an external
solver may be needed.

For now, Vélus does not implement any of these ideas, and the program of figure 3.13
cannot be scheduled. The dependency analysis that we have described in this chapter
reflects this constraint. We believe that implementing and verifying on-demand inlining
of nodes in Vélus would not be too difficult. However, we do not know how a type-based
causality analysis would impact our proofs of determinism and clock correctness.

3.6.2 Verified Graph Analysis

A depth-first search graph analysis was previously formalized in Coq [Pot15] as part of an
algorithm for calculating strongly-connected components. The second part of the paper
proposes a specification of the depth first search algorithm. Its termination is specified
using dependant types. The algorithm program itself is not given, as it is written directly
in the tactic language of Coq. The author states that using Program, as we proposed in
this dissertation, may make for a more readable code. Finally, two possible improvements
are proposed that also apply to our work:

• Our algorithm is formulated using concrete datatypes for vertices, sets of vertices,
and graphs (ident, PS.t, Env.t). We could use a more generic formulation with
abstract types, which would allow for a more reusable algorithm.

• The function we implement is not tail-recursive, therefore the extracted OCaml
function is not either. On large graphs with “deep” dependencies, the execution
of this implementation may lead to a stack overflow. In practice, this has not yet
happened, but we have not tested our compiler on any large, real-world industrial
program. A way to mitigate this issue would be to implement a tail-recursive
function using an explicit stack, but the specification of such a function would be
more intricate.

78

Chapter 4

Front-End Compilation

Now that we have introduced the specification of the Vélus front-end language, and some
of its core properties, we can start discussing how the compiler is implemented and proved
correct. This chapter is dedicated to the front-end of the compiler. The front-end first
parses and elaborates the source program. Then, it successively simplifies each of the
control blocks through a series of source-to-source transformation passes. This pipeline
is summarised in figure 4.1. The following sections describe these passes. Appendix B
shows the effect of each successive pass on the drive_sequence node presented in the
introduction.

4.1 Parsing of Source Programs

Vélus includes a parser that transforms the content of a text file into an AST. Like
in CompCert, the parser is implemented using the Coq back-end of the Menhir parser
generator [PR16]. Menhir takes as input a formal grammar of the language to be parsed,
where each derivation rule is associated with a “semantic action”, that is, a Coq expression
used to combine the parsed sub-terms of the rule. Menhir then generates an LR(1)
automaton corresponding to the grammar. This automaton is passed to an interpreter
implemented in Coq that takes as input a stream of tokens from a textual program and
produces an AST, or fails in case of a syntax error. The Coq port of Menhir is validated,
using a proof-carrying code approach [JPL12]. Along with the automaton, the parser

Untyped
Lustre

Lustre

parsing

elaboration

completion
state

machines

switch
blocks

local
blocks

unnesting

last
normalization

fby
normalizationdependency

analysis

Figure 4.1: Architecture of the Vélus front-end

79

4. Front-End Compilation

generates a certificate that is checked by a validator implemented and verified in Coq.
The validator ensures three properties of the automaton:

• Correctness: only programs described by the grammar are accepted.

• Safety: interpretation of the automaton does not raise an internal error.

• Completeness: a sequence of tokens that adheres to the grammar is parsed.

The first property holds, by construction, for any input grammar. The latter two only
hold for unambiguous grammars. While Menhir only normally signals conflicts in the
grammar as warnings, this validator forces us to make the grammar unambiguous.

Using the Coq back-end also comes with some limitations. Precedence and associativ-
ity declarations cannot be used to solve conflicts: the grammar has to be LR(1) without
annotations. The semantic type of every nonterminal symbol must be explicitly specified.
Parameterized nonterminals, such as list(t) or separated_list(sep, t) are not avail-
able. Without this “polymorphism”, we need to explicitly define lists of expressions, lists of
blocks, lists of nodes, etc. This makes the grammar a bit cumbersome to define, especially
for the syntax of expressions, and their precedence rules. The complete grammar for the
language is therefore expressed as 600 lines of code including semantic actions.

The parser generates a term in the Untyped Lustre AST. This AST differs from the
one presented in section 2.1.1 in a few ways. The most important is that expressions are
not annotated by their types and clock types; the elaboration pass described below adds
these annotations. Enumerated constructors are represented by their names (appearing
in the program) and not by their tag (the number of the constructor in the type). Finally,
every term is annotated by location information, which allows for the printing of precise
error messages during elaboration.

4.2 Generating Fresh Identifiers

Most of the compilation algorithms used in the front-end require the introduction of new
variables. These variables are used at left of new equations introduced by the compiler.
For instance, during the normalization pass, the equation f = 0 fby (f + (1 fby f))
is compiled to f = 0 fby (f + f$1); f$1 = 1 fby f. Here, f$1 is a new identifier intro-
duced by the compiler. For the compiler to be correct, each of the newly introduced
identifiers must be unique. In the context of a compiler implemented in a language with
side-effects, this would be easy to implement: we could increment a global counter every
time an identifier is generated, and use its value in the name of the identifier. However,
Coq is a pure functional language, so using side-effects is not possible.

One possible solution is to axiomatize a function, that is, suppose its existence without
defining it in Coq. At extraction, this axiomatized function may then be defined by an
OCaml expression, using the whole language, including its imperative features. However,
just using axiomatized functions is not sufficient. Indeed, to prove properties of the
compiler, we need to reason about the identifiers being generated: specifically, we need to

80

4.2. Generating Fresh Identifiers

know that they are distinct from previously generated identifiers. One solution would be
to axiomatize, in Coq, some properties of the OCaml function. Of course, one needs to
be extremely careful not to introduce a false property as an axiom; to reduce this risk,
these properties must be as simple and obvious as possible. In the following, we describe
how we tackled this issue in Vélus, by axiomatizing a simple gensym function written in
OCaml, and then by building more complex identifier-generation functions and reasoning
using a monadic approach.

4.2.1 Gensym Axiomatization

Identifiers are represented as positive integers in the Coq formalization of both CompCert
and Vélus. However, these identifiers also need to be related to a textual representation for
printing error messages and intermediate programs. CompCert implements this relation
using two hash tables at the OCaml level. These tables associate OCaml strings with
identifiers and vice-versa. For Vélus to generate identifiers consistently with CompCert,
we need to take into account these tables. We now describe this OCaml code, and how
our Coq formalization interacts with it.

The hash tables are manipulated through the intern_string and extern_positive
functions, reproduced in listing 4.1. The first takes an OCaml string, and tries to recover
the associated positive integer from the table. If the string is not in the table, a fresh
positive integer is generated, using a global counter stored in a mutable reference. An
association between the string and the new positive integer is added in both tables, and
the new positive integer is returned. The second takes as input a positive integer, and
returns the string associated with it. If it does not exist, it simply returns a string
containing the value of the positive integer, preceded by a $ character. Note that these
two functions are not symmetrical: only the first one may introduce new associations in
the tables. Functions str_to_pos and pos_to_str simply compose these functions with
translations between OCaml and Coq strings.

In Vélus, we axiomatize these last two functions in Coq, as shown in listing 4.2. This
allows us to (i) insert new strings in the table, from the Coq code, and (ii) define some
predicates on the textual name of the identifier. For instance, the atom predicate ensures
that the string associated with an identifier does not contain the $ character.

We assume only two properties of these functions. First, str_to_pos should be
injective. This is true of the OCaml implementation if (i) camlstring_of_coqstring
is injective, and (ii) intern_string is injective. The second point is true as long
as the pos_of_string table is itself injective, which is true if it has only been ma-
nipulated through the intern_string function. The second property is that calling
pos_to_str after str_to_pos is the identity function. This is true because (i) composing
camlstring_of_coqstring and coqstring_of_camlstring gives the identity function, and
(ii) calling extern_positive after intern_string necessarily returns the same string, even
if it was just inserted.

There is an issue with pos_to_str: it is not a mathematical function, in the sense that
two calls to pos_to_str with the same arguments may return different values. Consider,
for instance, the sequence of calls pos_to_str 2, str_to_pos "hello", pos_to_str 2.

81

4. Front-End Compilation

let pos_of_string = (Hashtbl.create 17 : (string, positive) Hashtbl.t)
let string_of_pos = (Hashtbl.create 17 : (positive, string) Hashtbl.t)

let next_positive = ref Coq_xH
let fresh_positive () =
let p = !next_positive in
next_positive := Pos.succ !next_positive;
p

let intern_string s =
try Hashtbl.find pos_of_string s
with Not_found ->
let p = fresh_positive () in
Hashtbl.add pos_of_string s p;
Hashtbl.add string_of_pos p s;
p

let extern_positive p =
try Hashtbl.find string_of_pos p
with Not_found ->
Printf.sprintf "$%d" (to_int p)

let str_to_pos str = intern_string (camlstring_of_coqstring str)
let pos_to_str pos = coqstring_of_camlstring (extern_positive pos)

Listing 4.1: Manipulating identifier tables [CompCert]

The first call will return "$2" if the tables start empty. However, if the call to str_to_pos
creates the association 2 ↔ "hello", then the last call will return "hello". This is
an issue because Coq assumes that all functions are pure, which allows for substituting
syntactically equal terms. Here, this is not necessarily the case. However, this does not
introduce bugs in Vélus: pos_to_str is only used to define the atom predicate, and the
equality between two calls to pos_to_str or atom is never tested by the compiler or
reasoned about in a proof.

Nonetheless, manipulating axiomatized functions is risky. The explanations as to why
our axioms are correct lack the rigor of mechanized proofs. One must be particularly
careful and limit interactions with axiomatized functions and the introduction of new
axioms. Earlier versions of Vélus stated two wrong axioms on these functions.

First, pos_to_str is not injective. Consider the sequence of calls pos_to_str 42,
str_to_pos "$42", pos_to_str 2, started with empty hash tables and the global counter
set to 1. The first call returns "$42", because of the exception in extern_positive. The
second associates "$42" and 2 in both tables. This means that the last call returns "$42",
even if its argument is different from the first call.

Second, calling str_to_pos on the result pos_to_str is not necessarily the identity
function. Consider the call str_to_pos (pos_to_str 42), with a pair of tables where the
only association is 2 \leftrightarrow "$42". The first call returns "$42", following
the exceptional behavior of extern_positive. However, the second call returns 2, because

82

4.2. Generating Fresh Identifiers

Axiom str_to_pos: string -> ident.
Axiom pos_to_str: ident -> string.

Axiom str_to_pos_injective: ∀ x x’,
str_to_pos x = str_to_pos x’ ->
x = x’.

Axiom pos_to_str_equiv: ∀ x,
pos_to_str (str_to_pos x) = x.

[...]
Definition local := str_to_pos "local".
Definition norm1 := str_to_pos "norm1".
[...]

Definition atom x := ~In_str "$" (pos_to_str x).

Listing 4.2: Conversion between positive integers and strings Ident.v:10

the association already exists.
Using these erroneous axioms in the formalization eventually led to bugs in our

first approach. In practice, there were some conflicts in the names used in the table,
which meant that the generated assembly code did not always use the correct names
for function symbols. We discovered this problem when the assembler ld refused the
generated assembly code. To solve this problem, we removed the two incorrect axioms,
and reworked identifier generation using a new gensym function.

This function is implemented in OCaml as shown in listing 4.3. It takes three
parameters. The first is a prefix string which will appear at the start of the new string.
It should always be an atom (that is, it should never contain the $ character). If not, the
compiler aborts; in practice, we always use this function properly. The second is optional,
and serves to add some text in the string hinting at the origin of the new identifier. If it
is provided, it appears in the middle of the string. The third is a positive integer. The
text of the number itself is placed at the end of the string. These three “segments” of the
new strings are separated by $ characters. The new string is inserted in the table using
the intern_string function, and a new positive integer is returned.

let gensym pref hint x =
let pre = extern_atom pref in
if String.contains pre ’$’ then invalid_arg "gensym";
match hint with
| None -> intern_string (pre^"$"^string_of_int (to_int x))
| Some hint ->
intern_string (pre^"$"^extern_atom hint^"$"^string_of_int (to_int x))

Listing 4.3: gensym in OCaml

This function was designed so that the axioms presented in listing 4.4 hold. First, the

83

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Ident.html#pos_to_str

4. Front-End Compilation

produced identifier should never be an atom. This is obviously true: the string associated
with the identifier contains at least one $ character. Second, gensym is (weakly) injective,
in the sense that, if at least one of the pref and positive integer parameters is changed,
then the result is changed. This is true, because the resulting string is always of the
form "pref$x" or "pref$hint$x". Since neither pref nor x contain a $ character, the
decomposition of such a string is unique. We do not have to assume that pref is an atom
in the statement of the axiom, because the compiler will abort if it is not. This simplifies
proofs.

Axiom gensym : ident -> option ident -> ident -> ident.

Axiom gensym_not_atom: ∀ pref hint x,
~atom (gensym pref hint x).

Axiom gensym_injective’: ∀ pref hint id pref’ hint’ id’,
pref <> pref’ \/ id <> id’ ->
gensym pref hint id <> gensym pref’ hint’ id’.

Listing 4.4: gensym in Coq Ident.v:387

These axioms are sufficient to ensure the correctness of identifier generation. We now
describe the more general mechanism and reasoning that exploits these definitions to
generate identifiers through each pass of the compiler.

4.2.2 The Fresh Monad

As we stated in the introduction to this chapter, the Vélus front-end is structured as
a series of passes that rewrite programs into smaller and smaller subsets of the source
language. Most of these passes may generate new identifiers. For each pass, we need to
prove that the identifiers introduced during the pass do not interfere with the identifiers
introduced in previous passes, or with the ones appearing in the source node.

Our approach is the following: each pass introduces identifiers using the gensym
function. The prefix pref parameter passed to gensym is unique to each pass. The postfix
number is generated through a counter that is local to the pass. Informally, we know that
since each pass has its own prefix, then the identifiers generated between passes do not
interfere with one another. In Coq, this is mechanized by adding an n_good field to the
node Record, as presented in listing 4.5. It specifies that (i) the name of the node is an
atom (this is useful when eventually generating C code), and (ii) that (2) the name of
global and local variables are either atoms or generated using gensym with a prefix in
a given set prefs. The set of prefixes is given as a parameter of the node type. This
parameter varies during compilation: intuitively, after each compilation pass, one new
prefix is added to the set. Since n_good is used pervasively to prove the preservation of
other node invariants, it is easier to include it directly in the type of nodes rather than to
have it as an external predicate.

84

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Ident.html#gensym

4.2. Generating Fresh Identifiers

Definition AtomOrGensym (prefs : PS.t) (id : ident) :=
atom id \/ PS.Exists (fun p => exists n hint, id = gensym p hint n) prefs.

Record node {prefs : PS.t} : Type :=
mk_node {

n_name : ident;
n_in : list (ident * (type * clock * ident));
n_out : list decl;
n_block : block;
[...]
n_good : Forall (AtomOrGensym prefs) (map fst n_in ++ map fst n_out)

/\ GoodLocals prefs n_block
/\ atom n_name;

}.

Listing 4.5: Invariant specifying the well-formedness of identifiers Lustre/LSyntax.v:497

To ensure non-interference during a pass, we reason about the counter that provides
the second parameter of gensym. To do so, we use a monadic approach. The Fresh
monad described in listing 4.6 is essentially a specialization of the state monad [Wad92].

The state of identifier generation is captured by the fresh_st type. First, it contains
the counter st_next. Second, the list st_anns keeps track of the generated identifiers,
along with some optional annotation (of type B) for each identifier. Two invariants
should always be preserved on states. First, all generated identifiers must be distinct
(st_nodup). Second, they must all have been created by calling gensym with a postfix
that was inferior to the current value of the counter. This allows us to prove that future
generated identifiers are also distinct from the existing ones. In our development, the
definition of type fresh_st is abstracted under an opaque module. The module provides
operations and lemmas on this abstracted type that is sufficient to reason on states.

A Fresh value is simply a function that takes a state as input, and returns a value
and an updated state. As usual for monads, the ret function wraps a pure value in
Fresh, and bind sequences two monadic operations. Countrary to the fresh_st type,
the Fresh type is left transparent to the user. This way, monadic expressions appearing
in the context of a proof may be reduced, which facilitates mechanized reasoning.

The operation that actually generates names and modifies the state is the fresh_ident
function. It has two implicit parameters: the prefix pref and type of annotations B.
Its inputs are the optional hint, and the annotation b to be associated with the new
identifier. The returned monadic value is a function that takes a state as input, calls
gensym with the prefix, hint and current counter. The resulting identifier is added to
the state, and the counter is incremented. We omit from the listing the proofs that the
st_nodup and st_prefs are valid for the new state. Both are straigthforward, and rely
on the fact that these properties are true of the predecessor state. The proof of st_nodup
also depends on the axiomatized injectivity of gensym. Like the definition of fresh_st,
fresh_ident is abstracted, and only a few well-chosen properties of its execution are
exposed.

85

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSyntax.html#LSYNTAX.node

4. Front-End Compilation

Record fresh_st (pref : ident) (B : Type) : Type :=
{ st_next : ident;
st_anns : list (ident * B);
st_nodup : NoDupMembers st_anns;
st_prefs : Forall (fun id => exists x hint, id = gensym pref hint x

/\ Pos.lt x st_next)
(map fst st_anns)

}.

Definition Fresh pref (A B : Type) : Type :=
fresh_st pref B -> A * fresh_st pref B.

Definition ret (a : A) : Fresh pref A B := fun st => (a, st).
Definition bind (x : Fresh pref A B) (k : A -> Fresh pref A’ B)
: Fresh pref A’ B := fun st => let ’(a, st’) := x st in k a st’.

Program Definition fresh_ident {B} {pref} hint (b: B) : Fresh pref ident B :=
fun st =>
let id := gensym pref hint (st_next _ _ st) in
(id, {| st_next := Pos.succ (st_next _ _ st);

st_anns := (id, b)::st_anns st |}).

Definition st_follows (st st’ : fresh_st pref B) :=
(st_anns st) ⊆ (st_anns st’).

Listing 4.6: Fresh Monad definitions Fresh.v:31

Finally, we establish an order relation on states: st_follows st st’ states that all
identifiers generated in st also appear in st’. This is true if st’ is the result of a sequence
of applications of fresh_ident on st; we say that st’ follows st. This property facilitates
reasoning by inclusion, in particular in proofs of type and clock-type preservation.

We use a tactic to simplify bind expressions. If the proof context contains the expres-
sion bind v1 f st1 = (v3, st3), then the tactic introduces intermediate values and
the following equalities: v1 st1 = (v2, st2) and f v2 st2 = (v3, st3). This auto-
matically decomposes monadic functions, which facilitates inductive reasoning. Overall,
we believe that the method we adopted is the most suited to our needs, and that the
difficulties that sometimes arise are inevitable for a realistic verified compiler.

4.3 Elaboration of Lustre Programs

We now discuss the elaboration which adds type and clock-type annotations to the parsed
AST. The elaborator may fail for programs that are not well formed. It is therefore
implemented as a Coq function that returns a value in the error monad (OK/Error).

In the following, we focus on how the elaborator infers clock-type annotations for
untyped expressions. This is not as easy as adding the type annotations, which can be
checked directly. We also discuss the verification of this elaborator.

86

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Fresh.html#FRESHKERNEL.fresh_st

4.3. Elaboration of Lustre Programs

4.3.1 Clock-Type Elaboration by Monadic Unification

Inferring clock-type annotations for a Lustre program is not trivial, even if all variables
are already declared with their clocks. This is due to the interaction of two features that
increase the expressivity and ease of use of the language. First, the node subsampling
described in section 2.4.4. Second, the fact that whens for sampling constants may be
added implicitly. Consider the example in listing 4.7. In the first node, f, it is easy to
infer that the constant 0 should be sampled on the clock • on false(b); it is a direct
consequence of the merge clock-typing rule. The elaborator replaces this constant with
0 when false(b). Inferring the clock type of the 4 constant in node g is not so simple.
Indeed, it depends on the clock-typing rule for node application. By considering the clock
type of f, and the fact that the first argument passed to f has clock type • on true(b1),
we can deduce that this constant should have clock type • on true(b1) on true(b2), and
replace the constant by 4 when true(b1) when true(b2).

node f(b : bool; x : int when b) returns (y : int)
let

y = merge b (true => x) (false => 0);
tel

node g(b1 : bool; b2 : bool when b1) returns (z : int when b1)
let

z = f(b2, 4);
tel

Listing 4.7: Lustre node that requires general clock-type inference

More generally, a unification-based algorithm can be used to infer the clock types of
expressions in a program [CP03]. We adopt a monadic approach by defining an ad-hoc
composition of the state and error monads that we call the elaboration monad. The type
sclock shown in listing 4.8 is used to represent a clock that may contain an unresolved
clock-type variable. The state of the monad contains a counter used to generate fresh
clock-type variables through gensym. We do not use the Fresh monad described in the
previous section, because we do not need to keep track of the list of generated identifiers
in this pass. The state also contains a substitution that associates existing clock-type
variables to more precise clock types. This substitution is enriched every time two clock
types are unified. A monadic value of type Elab A takes as input a state and returns
either a value of type A and a new state, or an error. The definitions of the ret and bind
functions for Elab A are unsurprising; we do not reproduce them here. For brevity, we
do not present the definitions of the substitution and unification functions either; they
are straightforward.

The elaboration of expressions occurs over two passes. The first function, elab_exp,
takes as input an untyped expression and constructs an “elaboration expression” of
type eexp. This intermediate type is identical to the type of expressions presented in
section 2.1.1, except (i) the clock-type annotations in the AST use the sclock type, and

87

4. Front-End Compilation

Inductive sclock :=
| Sbase : sclock
| Son : sclock -> ident -> (type * enumtag) -> sclock
| Svar : ident -> sclock.

Definition elab_state : Type := (ident * Env.t sclock).

Inductive res (A: Type) : Type :=
| OK : A -> res A
| Error : errmsg -> res A.

Definition Elab A := elab_state -> res (A * elab_state).

Listing 4.8: Elaboration Monad Lustre/LustreElab.v:242

Fixpoint elab_exp (ae: expression) {struct ae} : Elab (eexp * astloc) :=
match ae with
| CONSTANT ac loc =>
do x <- fresh_ident;
do c <- elab_constant loc ac;
ret (Econst c (Svar x), loc)

[...]
| APP f aes loc =>
(* elaborate arguments *)
do eas <- mmap elab_exp aes;
(* instantiate node interface *)
do (tyck_in, tyck_out) <- find_node_interface loc f;
let nanns := lnannots eas in
let sub := instantiating_sub tyck_in nanns in
do xbase <- fresh_ident;
do ianns <- mmap (inst_annot loc (Svar xbase) sub) tyck_in;
do oanns <- mmap (inst_annot loc (Svar xbase) sub) tyck_out;
do _ <- unify_params loc ianns nanns;
ret (Eapp f (map fst eas) oanns, loc)

end

Listing 4.9: Elaborating an expression Lustre/LustreElab.v:871

(ii) constants are also annotated with an sclock. For constants, the clock-type annotation
introduced initially is always Svar, because we do not know if implicit whens must be
added. The other interesting case is that of a node instantiation, where the base clock
of the instantiation is first introduced as a clock-type variable. The instantiating_sub
function builds a substitution sub of parameter names to argument names; the argument
names can only be the names of “named clocks” as described in section 2.4.4. The resulting
substitution is then used to instantiate the input and output parameters of the node.
If one of the clocks of these parameters depends on a variable that is not in sub, then
inst_annot returns an error: this corresponds to having a dependency on an anonymous
input or on an output, which is not allowed. Finally, the instantiated parameters are

88

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LustreElab.html#Elab
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LustreElab.html#elab_exp

4.3. Elaboration of Lustre Programs

unified with the annotations of the arguments. The case of a node instantiation appearing
directly at right of an equation, which allows for dependencies between outputs, is similar.

The second function, freeze_exp, is partially shown in listing 4.10. It takes as input
an elaboration expression, and “freezes” its annotations: that is, it turns unification
clocks into fixed clocks without clock-type variables. This is accomplished by function
freeze_clock, which first propagates the current substitution through an sclock, and
then converts it to the clock type. The interesting case of freeze_exp is the one for
constants, where the implicit sampling must be added depending on the inferred clock of
the constant. The recursive function add_whens traverses the clock-type annotation, and
adds when for each Con constructor.

Fixpoint sclk’ (ck : sclock) : clock :=
match ck with
| Sbase | Svar _ => Cbase
| Son ck’ x b => Con (sclk’ ck’) x b
end.

Definition freeze_clock (sck : sclock) : Elab clock :=
do sck <- subst_sclock sck;
ret (sclk’ sck).

Fixpoint add_whens (e: Syn.exp) (tys: list type) (ck: clock) : Elab Syn.exp :=
match ck with
| Cbase => ret e
| Con ck’ x (tx, k) =>
do e’ <- add_whens e tys ck’;
if Env.mem x env then ret (Syn.Ewhen [e’] (x, tx) k (tys, ck)) else error [...]

end.

Fixpoint freeze_exp (e : eexp) : Elab Syn.exp :=
match e with
| Econst c ck =>
let ty := ctype_cconst c in
do ck’ <- freeze_clock ck;
add_whens (Syn.Econst c) [Tprimitive ty] ck’
[...]

end.

Listing 4.10: Freezing an expression Lustre/LustreElab.v:1014

When elaborating an equation, as presented in listing 4.11, the expressions at right
of the equation are first elaborated using elab_exp. The resulting annotations are then
unified with the declared annotations of the variables at left of the equation. Finally,
the expressions are frozen using freeze_exp. The elaboration of blocks is defined as
a single pass that traverses the blocks and elaborates each individual sub-equation or
sub-expression in the block.

89

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LustreElab.html#freeze_exp

4. Front-End Compilation

Definition elab_equation (aeq : LustreAst.equation) : Elab Syn.equation :=
let ’((xs, es), loc) := aeq in
do es’ <- mmap elab_exp es;
do _ <- unify_pat loc xs (lannots es’);
do es’ <- mmap freeze_exp (map fst es’);
ret (xs, es’)

end.

Listing 4.11: Elaborating an equation Lustre/LustreElab.v:1114

4.3.2 Translation Validation of the Elaboration

What does it mean for this elaborator to be correct? First, the elaborated program should
“correspond” semantically to the untyped program. Second, the elaborated program
should be well typed and well clocked, according to the rules outlined in chapter 2 and
presented completely in appendix A.

The first point cannot be formally verified, as there is no semantic model for untyped
programs. However, the elaborator is defined as a simple recursive function that constructs
type terms of the same form as the source untyped terms. Therefore, the correctness of
the pass can be easily checked by inspection of the elaborator’s source.

The second point could be proven directly as a theorem that states that, if the
elaboration returns an OK value, then the term returned is well typed and well clocked.
Earlier versions of Vélus took this approach. At the time, the clock-type elaboration
algorithm was simpler than the one described here, but the proof was still quite intricate.
In the generalized monadic approach, the proof would be even more complex, so we
decided to abandon direct verification.

Instead, we rely on translation validation. Two decision procedures are applied to
the elaborated term to check that it is well typed and well clocked. If both return true,
compilation continues; otherwise, the compiler aborts with an error message. Both of
these procedures are simpler than the elaboration function, and it is easy to prove their
correctness relative to the inductive definitions of the type and clock-type systems. We
expect that, for an elaborated term, these functions never return false. If they did, it
would mean that either the elaborator adds incorrect annotations, or that it is missing
some checks.

In addition to typing and clock-typing, we need to validate the other static node
invariants used to prove compilation correctness. Indeed, as we stated in section 2.1.1,
these invariants, listed in appendix A.1 are “stored” in fields of the dependent Record
node. This means that we cannot build a value of type node without first proving that
they hold. Each invariant is stated as an inductive relation between the inputs, outputs,
and body of a node. It is checked by a separate procedure that may return error messages
and is relatively easy to verify.

90

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LustreElab.html#elab_equation

4.4. Structure of the source-to-source rewriting passes

e ::= c | C | x | last x | ⋄ e | e ⊕ e | e when C (x)

ce ::= merge x (C => ce)+ | case e of (C => ce)+ | e

sc ::= c | C | sc when C (x)

blk ::= x = ce
| x = sc fby e
| x+ = f (e+) | x+ = (reset f every x) (e+)
| last x = sc
| reset blk every x

var ::= x : ty on ck

nodedecl ::= node f (var+) returns (var+) var var * let blk+ tel

Figure 4.2: Restricted syntax of normalized Lustre Lustre/LSyntax.v:1500

4.4 Structure of the source-to-source rewriting passes

We now move on to the source-to-source rewriting passes that transform a general Lustre
program into one that only uses a subset of the language. We first introduce some general
ideas behind all of the passes, before describing each pass in more detail.

4.4.1 Normalized subset of the language

We first describe the normalized subset of the language that the source-to-source rewriting
passes target. The right subset should be restricted enough to simplify the middle-end
compilation passes, but expressive enough to define optimizations and produce efficient
code. We present the restricted syntax in figure 4.2. The language is structured with two
tiers of expressions: simple expressions, that only contain constants, variables, arithmetic
and subsampling operators, and control expressions which may contain conditional
operators (merge and case). Finally, stateful constructs (fby, node instantiations) may
only appear directly under an equation. Note also that all operators have been distributed
over their arguments. There can only be one expression under any when, branch of
a merge, etc. These transformations are treated by the Unnesting pass described in
section 4.10. The restricted language does not contain state machines (section 4.7) or
switch blocks (section 4.8). In addition, local declarations can only appear at top of the
block; their flattening is described in section 4.9.

4.4.1.1 Reset Blocks

The normalized language still contains (possibly nested) reset blocks. Indeed, we
have found that it is not possible to efficiently compile these resets into other opera-
tions of the Lustre language. Previous work [CPP05] suggests using conditionals to

91

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSyntax.html#LSYNTAX.normalized

4. Front-End Compilation

compile the reset of a fby. For instance, reset x = e0 fby e1 every r would become
x = if r then e0 else (e0 fby e1). However, recall that the clock of a reset condition
is independent from the clock of the underlying equations. This means that even if the
source program is well clocked, a program compiled this way may not be. If r has a slower
clock than x, this is not a problem: r can be merged with false to get a well-clocked and
semantically equivalent program. If r is faster, however, we cannot simply sample it, as
we may loose some resets that can still happen while the clock of x is inactive, and must
be taken into account. It would be possible to add delays to memorize the occurrence of
a reset signal and process it later, when the clock of x is active, but this is an intricate
transformation [HP00].

Instead, we treat reset as a primitive operation in the intermediate languages, and
thus in the normalized form. This generates efficient code, especially in the case where
a stateful construct has several different reset conditions as described in section 5.3.
In the normalized syntax, the existence of multiple reset conditions is modeled by the
possibility of nested reset blocks. The Transcription pass transforms these nested blocks
into simpler equations in the NLustre language, as described in section 5.2.2.

4.4.1.2 Shared Variables

There are two ways of treating last variables in the compiler. The first is to eliminate
them early by compiling them using fby. The declaration last x = e can be compiled
by introducing a new identifier lx defined by the equation lx = e fby x. In the rest
of the code, all occurrences of last x are replaced with lx. This yields a program
that is semantically equivalent, and does not contain any last variables. The following
compilation passes are simpler to define and verify, as they do not need to handle last
variables and declarations.

However, the code generated by this scheme is not always optimal. Consider the
program of figure 4.3. It contains a partial definition for output x, which is authorized
since x is declared with a last value. The generated C code, if we compile last with
fby, is given at the bottom left. Notice that it copies the content of the state variable
(*self).lx into temporary variable x, and then copies x back into (*self).lx. These
extra copies are not ideal, and cannot be optimized away without either a complex analysis
of the whole program, or additional invariants whose preservation would have to be proven
across all intermediate compilation passes. We would like the code presented at right to
be generated instead.

To achieve this, we treat last as a primitive construction in intermediate languages,
and therefore keep it in the normalized syntax. This require more work in the whole
compiler chain, which we detail in chapter 5.

4.4.2 Implementation and Notations

Most of the compilation passes detailed below implement the compilation scheme proposed
in earlier work [CPP05; Bie+08]. We show how to adapt these schemes and prove them
correct within a proof assistant.

92

4.4. Structure of the source-to-source rewriting passes

node f(b: bool) returns (x: int)
let
last x = 0;
switch b
| true do x = last x + 1;
| false do
end

tel

node f(b: bool) returns (x: int)
var lx: int;
let
lx = 0 fby x;
switch b
| true do x = lx + 1
| false do x = lx
end

tel

int f$step(struct f *self, char b) {
register int x;
switch (b) {
case 1:
x = (*self).lx + 1;
break;

case 0:
x = (*self).lx;
break;

}
(*self).lx = x;
return x;

}

int f$step(struct f *self, char b) {
switch (b) {
case 1:
(*self).x = (*self).x + 1;
break;

case 0:
break;

}
return (*self).x;

}

completion
+

shared variables

compilation
to Clight

ideal
compilation

Figure 4.3: A node with partial definition and its compiled code

93

4. Front-End Compilation

Each compilation pass is implemented as a distinct recursive function on the syntax of
programs. All compilation functions are total. In this dissertation, we will use a unique
notation to denote them.

⌊
S
⌋
p

denotes the compilation of syntactic element S (which can
be an expression, block, program) under some additional parameters p. In most cases,
this function returns a syntactic element of the same type as S. In some cases, it may
instead return a list of syntactic elements, or a pair with syntactic elements and other
values.

Each compilation pass is accompanied by proofs of type, clock, and semantics preser-
vation. The proofs all proceed by induction on the definitions in a program, then on
the syntax of blocks. We outline the invariants and core properties but omit the te-
dious syntactic properties that are usually also necessary, for example, typing invariants,
uniqueness of declared identifiers, etc.

4.5 Completing Partial Definitions

As seen in figure 1.6, if a variable has a defined last value, then it can be defined across
a switch or state machine, even if some branches lack an equation for it. The source
semantics completes any such partial definitions with an implicit x = last x equation.
To facilitate the compilation of switch block in a later pass, the compiler makes these
equations explicit.

4.5.1 Compilation Function

The interesting cases of the compilation function are presented in figure 4.4. we focus
on switch and state machines, where definitions may need to be completed. For each
branch, the function computes the difference between the set of all variables defined by
the block and the set of variables defined by the branch. For each variable x in this
difference, that is, for each missing definition in the branch, an equation x = last x is
added. In the notation for this pass, we take some liberties by conflating sets and lists.
In the Coq implementation, we use type PS.t to represent sets of identifiers efficiently,
and convert to lists using the PS.elements : PS.t -> list ident function.

4.5.2 Correctness

Proving the correctness of this compilation function is straightforward. The proof is
articulated around the correctness invariant presented below. It states that if the original
block has a semantics under history H, then the transformed block has a semantics under
the same history.

Invariant 1 Completion of Partial Definitions Lustre/Complete/CompCorrectness.v:91

if G,H, bs ⊢ blk then G,H, bs ⊢
⌊
blk

⌋
The interesting cases of the proof are the same ones shown in figure 4.4: switch and

state machines. In these cases, we must show that the added equations x = last x have

94

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.Complete.CompCorrectness.html#COMPCORRECTNESS.complete_block_sem

4.6. Dependency Analysis and Clocked Semantic Model

⌊
switch e [Ci do blks i]

i end
⌋
≜

let missing i :=
⋃

j Def(blksj)/Def(blks i) in
let lasteqs i := {x = last x | x ∈ missing i} in
switch e [Ci do lasteqs i;

⌊
blks i

⌋
]i end⌊

automaton initially ini [state Ci var locs i do blks i until tr i]
i end

⌋
≜

let missing i :=
⋃

j Def(blksj)/Def(blks i) in
let lasteqs i := {x = last x | x ∈ missing i} in
automaton initially ini [state Ci var locs i do lasteqs i;

⌊
blks i

⌋
until tr i]

i end⌊
automaton initially ini [state Ci do blks i unless tr i]

i end
⌋
≜

let missing i :=
⋃

j Def(blksj)/Def(blks i) in
let lasteqs i := {x = last x | x ∈ missing i} in
automaton initially ini [state Ci do lasteqs i;

⌊
blks i

⌋
unless tr i]

i end

Figure 4.4: Completion function Lustre/Complete/Complete.v:50

a semantics under the sampled history of the branch. This is proven using the implicit
completion premise introduced in figure 2.23. The overall proof of semantic correctness
for this pass is the shortest of the whole compiler, with around 250 LoC.

4.6 Dependency Analysis and Clocked Semantic Model

In the previous chapter, we defined the dependency analysis of Vélus. This analysis runs
after the completion of partial definitions so that it does not have to take into account
implicit x = last x equations. The analysis proceeds by constructing a dependency graph
according to the rules of section 3.1.2, and checks the absence of cycles in this graph using
the algorithm presented in section 3.2. If the analysis succeeds, we know that each node
in the program is node_causal. This means, in particular, that the streams associated to
these nodes respect the clock-correctness property described in section 3.5.

While working on the front-end compiler, we realized that this clock correctness
property is a necessary prerequisite in the correctness proofs for several of the compilation
passes detailed in the following chapters, for three reasons.

First, most of the semantic operators (fby, when, merge, . . .) are partial, and only allow
arguments with the same, or complementary, clock streams. When building a composed
expression from existing sub-expressions, we must prove that the streams produced by
these sub-expressions indeed have appropriate clocks. In some cases, this can be deduced
from other hypotheses in the context, but not always.

Second, the decomposition and recomposition of semantic hypotheses around the
reset operator require that the calculated streams respect the expected masking, which
is a corollary of the clock-correctness property.

95

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.Complete.Complete.html#COMPLETE.complete_block

4. Front-End Compilation

Finally, the property must be preserved up to the generation of imperative code.
Indeed, following the model proposed in [Bie+08], the imperative code generated from
a dataflow program is “clock-directed”. The general idea is that clock-type annotations
are used to generate conditionals that control the activation of instructions. Hence, the
semantics of the imperative program depend directly on these clock-type annotations.
Therefore, the correctness proof of the generation of imperative code requires that the
semantics of intermediate languages respect the clock-correctness property.

For all of these reasons, we have to prove that the semantic model associated with
each intermediate program respects the clock-correctness properties. Considering the
number of separated compilation passes, this poses a proof-engineering issue. We describe
below the three strategies that we considered to tackle this problem.

Repeating the Dependency Analysis To establish the clock-correctness property
for a given program, we need to ensure that every node of the program is causal. The
node_causal property depends on the syntax of the node, which means that it is not
trivially preserved by compilation passes. One solution would be to re-analyze the program
after each compilation pass. If the analysis fails (which should never happen if the initial
analysis succeeded), then the compiler would simply raise an error message. In practice,
the graph algorithm we implemented is efficient, but the algorithm building the graph
from the program is less so, as it needs to visit the whole syntax tree of the program.
This means that the dependency analysis is still relatively costly, and we prefer to run it
only once.

Causality Preservation Instead of re-running the dependency analysis, we could
directly prove that every compilation pass preserves the causality of the compiled node:
if node_causal n, then node_causal

⌊
n
⌋
. We tried this approach on one of the simpler

compilation passes: the fby normalization. This proof is described briefly in [EMSOFT21],
and at more length in [Pes20]. In our experience, writing this proof was very difficult.
Indeed, as we have described, the node_causal predicate depends on the existence of
an AcyGraph that is global to the node, while the proof must be built inductively on
local transformations of the program. This discrepancy leads to a proof involving global
invariants that are difficult to reason about. Additionally, this work was done in an earlier
version of Vélus, before the introduction of causality labels, where the dependency graph
was built directly from the variable names in the program. We believe that the level of
indirection introduced by these labels would make reasoning even more cumbersome. For
this reason, we decided to abandon this approach.

Instrumented Semantic Model The approach we finally adopted stems from the
observation that we do not actually need to prove that each intermediate program is
causal. We only need to establish that their semantic models respect the clock-correctness
property, which is a consequence of causality. Therefore, we can simply prove that each
compilation pass preserves this property, which is far easier than showing that they
preserve causality. In practice, we define an extended semantic model that contains

96

4.6. Dependency Analysis and Clocked Semantic Model

∀x ck , Γ(x) = ck =⇒ H , bs ⊢ck x ck ⇓ vs

Γ, bs ⊢ck H

(a) sc_vars Lustre/LClockedSemantics.v:73

G(f) = node f (x1, ... , xn) returns (y1, ... , ym) blk
∀i ∈ 1...n, H (xi) ≡ xsi ∀i ∈ 1...m, H (yi) ≡ ysi

G ,H , (base-of (xs1, ... , xsn)) ⊢ck blk (ins + outs), (base-of (xs1, ... , xsn)) ⊢ck H
G ⊢ck f (xs1, ... , xsn) ⇓ (ys1, ... , ysm)

(b) sem_node_ck Lustre/LClockedSemantics.v:302

∀x , x ∈ dom(H ′) ⇐⇒ x ∈ locs G ,H +H ′, bs ⊢ck blks locs, bs ⊢ck H
G ,H , bs ⊢ck var locs let blks tel

(c) sem_scope_ck Lustre/LClockedSemantics.v:89

G ,H , bs ⊢ck es ⇓ xss G ⊢ck f (xss) ⇓ yss

G ,H , bs ⊢ck f (es) ⇓ yss

(d) Sapp Lustre/LClockedSemantics.v:196
.

Figure 4.5: Some core semantic rules of the clocked semantic model

enough additional information to deduce the clock-correctness property, and we prove
that compilation passes preserve this model, rather than the reference model presented in
chapter 2. Most of the semantic rules of this model are the same as in the reference model,
except for the ones presented in figure 4.5. The model encodes the clock-correctness
property at the level of declarations. We say that a history H has well-clocked semantics
under environment Γ if, for each variable x with clock type ck in Γ, then x annotated by
ck has well-clocked semantics, as per the definition of figure 3.12c. The semantic rules for
node and local scopes ensure that all histories have well-clocked semantics. Based on this
hypothesis, it is easy to prove that the streams produced by any expression also respect
the clock-correctness property.

Even if only these two rules are modified, the entire model needs to be redefined for this
approach to work. Indeed, the inductive definition of the semantic rules for expressions
depends on the rule for nodes (because of the node instantiation case, presented in
figure 4.5d). Unfortunately, this means that almost identical definitions and lemmas are
duplicated for the instrumented semantic model.

The theorem on the next page states that the existence of a source semantic model
for a well-clocked and causal node implies the existence of an instrumented semantic
model. It is proven using the causal inductive reasoning described in section 3.5. The
induction scheme allows to deduce that all input, output and local variables of the node

97

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClockedSemantics.html#LCLOCKEDSEMANTICS.sc_vars
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClockedSemantics.html#LCLOCKEDSEMANTICS.sem_node_ck
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClockedSemantics.html#LCLOCKEDSEMANTICS.sem_scope_ck
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClockedSemantics.html#LCLOCKEDSEMANTICS.Sapp

4. Front-End Compilation

are associated to streams that respect the clock-correctness property. We use this fact to
build witnesses for the new premises of the node and local declaration rules.

Theorem 4 (Existence of a Clocked Semantic Lustre/LClockCorrectness.v:2610)

if G ⊢wc f and node_causal G(f)

and G ⊢ f(xss) ⇓ yss

and G(f) = node f([xi : ck i]i) returns ([yj : ck ′j]
j) blk

and ∀i, H, (base-of xss) ⊢ck xckii ⇓ xss i

then G ⊢ck f(xss) ⇓ yss

4.7 Compiling State Machines

After the dependency analysis, compilation continues with the elimination of state
machines. This pass follows the scheme proposed in [CPP05], by transforming a state
machine into a combination of switch and reset blocks. This transformation is simplified
because we separate state machines with strong and weak transitions, proposing a
dedicated compilation scheme for each type.

4.7.1 Compilation Function

The compilation function is presented in figure 4.6. It takes the block to be compiled as
an input and returns two values: the compiled block and a set of type declarations to be
added to the program. Indeed, the list of states of each state machine must be converted
to a new type so that the state labels may be manipulated as values. We choose to collect
these new types in the same function that compiles blocks because it simplifies reasoning
on the well-typedness of the resulting program.

State machines with weak transitions are treated by generating a single switch, with
reset blocks in each branch. The condition of the switch and reset corresponds to
the state stream described by the semantics for this construction. It is stored in fresh
variables xst, xres. The next value of the state stream is calculated by the compiled
transitions, and is stored in xst1 and xres1. This corresponds exactly to the semantic rules
of section 2.9. In the same way, the compilation of initialization and transitions reifies the
semantics of these constructs. In the compiled code, the initialization expression must be
sampled on the clock of the state machine. We write Cck for the constant C sampled
(using when) on the clock ck .

The compilation of state machines with strong transitions is a bit more involved. It
requires the generation of two switch blocks. The first one handles the transitions and
controls which branch of the second one will be active in the same cycle. Again, this
reflects the semantic model exactly.

98

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClockCorrectness.html#LCLOCKCORRECTNESS.sem_node_sem_node_ck

4.7. Compiling State Machines

⌊
automaton initially inick [state Ci var locs i do blks i until tr i]

i end
⌋
≜

let blks ′i, tys i :=
⌊
blks i

⌋
in

var xst, xres, xst1, xres1;
let
(xst, xres) =

⌊
ini

⌋
ck

fby (xst1, xres1);
switch xst [Ci do reset var locs i let (xst1, xres1) =

⌊
tr i

⌋
Ci

; blks ′i tel every xres]
i end

tel, ({type ty = (Ci)
i} ∪ (

⋃
i tys i))⌊

automaton initially C ck [state Ci do blks i unless tr i]
i end

⌋
≜

let blks ′i, tys i :=
⌊
blks i

⌋
in

var xst, xres, xst1, xres1;
let
(xst, xres) = (Cck, falseck) fby (xst1, xres1);
switch xst [Ci do reset (xst1, xres1) =

⌊
tr i

⌋
Ci

every xres]
i end;

switch xst1 [Ci do reset blks ′i every xres1]
i end

tel, ({type ty = (Ci)
i} ∪ (

⋃
i tys i))⌊

otherwise C
⌋
ck
≜ (Cck, falseck)⌊

if e then C ini
⌋
ck
≜ if e then (Cck, falseck) else

⌊
ini

⌋
ck⌊

ϵ
⌋
Cd
≜ (Cd, false)⌊

| e then C;tr
⌋
Cd
≜ if e then (C, true) else

⌊
tr
⌋
Cd⌊

| e continue C;tr
⌋
Cd
≜ if e then (C, false) else

⌊
tr
⌋
Cd

Figure 4.6: Compilation of State Machines Lustre/CompAuto/CompAuto.v:66

4.7.2 Correctness

The invariant for the correctness proof is presented below; it states that the semantics of
the transformed block is preserved under the same history. The simplicity of this invariant
comes from the fact that the transformation is local to a block. The variables introduced
when compiling a state machine are captured by the scope and have no influence on the
semantics of parents or sub-blocks.

Invariant 2 Compilation of State Machines Lustre/CompAuto/CACorrectness.v:558

if G,H, bs ⊢ blk and
⌊
blk

⌋
= (blk ′, tys) then G,H, bs ⊢ blk ′

In the case of the proof where the blk is a state machine, the newly introduced variables
are associated with streams that reflect the state streams appearing in the semantic rules.
To establish a semantic for the switch and reset blocks, we rely on the correspondence of
select with when and mask described in lemma 2. We have omitted some details from the
proof, which we detail further in appendix C. Still, the proof of semantic correctness for
this pass is not too complex. This is mostly because the semantic definitions are directly

99

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.CompAuto.CompAuto.html#COMPAUTO.auto_block
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.CompAuto.CACorrectness.html#CACORRECTNESS.auto_block_sem

4. Front-End Compilation

mirrored in the source-to-source transformation. Still, the relative complexity of state
machines is only partially resolved by this pass; switch, reset, and local declarations
remain, and we will see further that compiling them is more difficult.

4.8 Compiling Switch Blocks

In the previous section, we showed how state machines are compiled by introducing
switch blocks. We now show how these blocks are compiled into the core dataflow
language. We follow the compilation scheme from [CPP05], which transforms switch
blocks using the when and merge operators.

4.8.1 Compilation Function

The compilation function for switch blocks is presented in figure 4.7. It is parameterized by
a substitution σ for renaming variables and a clock type ck for resampling constants. The
parameters account for enclosing switch blocks. Compilation, renaming, and resampling
thus occur together in a single pass. This complicates certain invariants but satisfies the
Coq syntactic criterion for checking function termination. We only present the interesting
case of the function. To compile a switch, we start by introducing new local variables.
First, xcond corresponds to the condition stream. Second, a sampled variable xCi

j is
introduced for any variable or last variable xj that is free (FV) in any block, for each
branch label Ci. Finally, a sampled variable yCi

j is introduced for any variable yj that is
defined (DV) in any block, for each branch label Ci. Each of the new free variables xCi

j

samples the original variable xj with when according to the condition variable and the
appropriate branch label. The defined variables yj are reconstituted by a merge over their
branch-specific versions yCi

j . Finally, the compilation function is applied recursively on
each branch, adding substitutions for branch-specific free and defined variables, and a
deeper, branch-specific clock type. The bottom part of figure 4.7 presents three important
cases from the expression compilation function: constants are resampled on the given
clock, variables are renamed, and recursively so, through when and other expressions.

Simplification and Optimization The Coq implementation does not actually compute
FV(blksi). It instead samples all variables not defined within the switch and on the clock
of the condition, whether they are used or not. The switch clock typing rule guarantees
that this gives a superset of the free variables. This approach simplifies the proof since
we do not have to reason about the FV function. A later pass (section 5.2.3.2) eliminates
variables and equations that are not required to calculate an output variable, whether
they are introduced by the compiler or a programmer.

4.8.2 Correctness

As we have seen, the compilation of switch involves a substitution for renaming variables.
For this compilation pass and some of the following, we will express invariants using

100

4.8. Compiling Switch Blocks

⌊
switch e [Ci do blks i]

i end
⌋
σ,ck
≜

var xcond, . . . ;let
xcond =

⌊
e
⌋
σ,ck

;

xCi
j = σ(xj) when Ci(xcond); ∀xj ∈ FV(blks i), ∀Ci

σ(yj) = merge xcond [(Ci => yCi
j)]i; ∀yj ∈ DV(blks i)⌊

blks i
⌋
{xj 7→ x

Ci
j }◦{yj 7→ y

Ci
j }◦σ, ck on Ci(xcond)

tel ⌊
c
⌋
σ,• ≜ c⌊

c
⌋
σ,ck on C(x)

≜
⌊
c
⌋
σ,ck

when C(x)⌊
x
⌋
σ,ck

≜ σ(x)⌊
e when C(x)

⌋
σ,ck

≜
⌊
e
⌋
σ,ck

when C(σ(x))

Figure 4.7: Compiling switch blocks Lustre/ClockSwitch/ClockSwitch.v:127

history extension modulo substitution; H1 ⊑σ H2 signifies that “H2 extends H1 after
renaming by σ”. When σ is the identity function, we write H1 ⊑ H2.

Definition 5 (History extension modulo substitution)

H1 ⊑σ H2 iff ∀x vs,H1(x) ≡ vs→ H2(σ(x)) ≡ vs

The inductive proof of correctness is structured around the invariant below. It assumes
that the source block blk has a semantics for history H1 and base clock bs. The base
clock corresponds to the evaluation of clock type ck under a faster base clock bs ′. The
new history H2 extends H1 modulo the substitution σ. If these conditions hold, then the
compiled block has a semantics under H2 and bs ′.

Invariant 3 (Compilation of switch blocks Lustre/ClockSwitch/CSCorrectness.v:597)

if G,H1, bs ⊢ blk and H1, bs
′ ⊢ ck ⇓ bs and H1 ⊑σ H2

then G,H2, bs
′ ⊢

⌊
blk

⌋
σ,ck

For the case of a switch, we know that the source block has a semantics under a
history H. To prove that the generated local scope has a semantics, each introduced
variable is associated to a stream satisfying the corresponding equation. The variable xcond
is associated with a condition stream cs whose correctness follows from a lemma on
expressions. For each branch, a sampled free variable xCi

j is associated with the stream
whenCi cs H(xj). The semantics of the new equations for defined variables, the σ(yj),
follows from the relation between when and merge stated in lemma 12. The semantics for
the blocks in branches follows inductively from the invariant, setting H1 to H, H2 to H
extended with the new variables, σ to the substitution introduced by the compilation
function, and ck to the clock for the corresponding branch. Compared to a source block

101

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.ClockSwitch.ClockSwitch.html#CLOCKSWITCH.switch_block
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.ClockSwitch.CSCorrectness.html#CSCORRECTNESS.switch_block_sem

4. Front-End Compilation

node f(x: int) returns (y, z: bool)
let
var t: int;
let t = x fby (t + 1);

y = t > 10;
tel;
var t: int;
let t = x + 1;

z = t < 0;
tel

tel

node f(x: int) returns (y, z: bool)
var t : int; localt1 : int;
let
t = x fby (t + 1);
y = t > 10;
localt1 = x + 1;
z = localt1 < 0

tel

Figure 4.8: Example of the flattening of local scopes

within a branch with base clock bs, the compiled version is activated on the faster base
clock of the new context bs ′. The slower clock bs corresponds to the clock type given as
a parameter of the compilation function.

Lemma 12 Correspondence of when and merge Lustre/ClockSwitch/CSCorrectness.v:111

merge cs (whenC1 vs cs, . . . ,whenCn vs cs) ≡ vs

4.9 Flattening Local Scopes

Nested local declarations may be present in a source node or introduced by the two
previous compilation passes. A normalized program, however, may only have a single
local declaration block as the top-most block. We now describe the pass that flattens
nested local scopes into a single one.

The main difficulty of this pass arises when a node uses the same identifier for two
local declarations, as is the case in figure 4.8. In that case, to produce a well-formed
node, at least one of the two declarations must be renamed to a fresh identifier, and the
renaming must be propagated in all sub-blocks of the declaration.

4.9.1 Compilation Function

The transformation function is shown in figure 4.9. Its parameter is a substitution σ which
encodes renamings. Compiling an equation applies the substitution to each variable at
left of the equation, and to all identifiers in each expression at right, which we write σ(e).
Reset blocks are traversed recursively. For local declarations, the fresh_idents function
builds a substitution from the existing declarations to new identifiers; we detail below
how this function is implemented. The compilation function is then called recursively
with the extended substitution. In addition to the sub-blocks, the list of declarations is
also returned. Compiling a node means compiling its body, and constructing a unique
top-level scope with this list of flattened and renamed declarations.

102

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.ClockSwitch.CSCorrectness.html#CSCORRECTNESS.merge_when

4.9. Flattening Local Scopes

⌊
xs = es

⌋
σ
≜ σ(xs) = σ(es), []⌊

last x = e
⌋
σ
≜ last σ(x) = σ(e), []⌊

reset blks every e
⌋
σ
≜ let blks ′, xs :=

⌊
blks

⌋
σ

in reset blks ′ every σ(e), xs⌊
var locs let blks tel

⌋
σ
≜ let σ′ := fresh_idents(locs) in

let blks ′, xs :=
⌊
blks

⌋
(σ+σ′)

in blks ′, xs + σ′(locs)⌊
node f(ins) returns (outs) blk

⌋
≜ let blks ′, xs :=

⌊
blk

⌋
id in

node f(ins) returns (outs) var xs let blks ′ tel

Figure 4.9: Flattening of local scopes Lustre/InlineLocal/InlineLocal.v:513

4.9.2 Fresh identifiers and the Reuse monad

The fresh_idents function needs to generate fresh identifiers to replace existing declarations.
An obvious way to implement this would be to use the Fresh monad described in
section 4.2.2. This is, however, not ideal: using this monad would, by default, rename all
local identifiers, and thus hinder traceability between the source and produced nodes; in
particular, if we use the scheme of figure 4.9 as is, this would even rename the top-level
declarations of the source node. Instead, we define an extended version of the Fresh
monad, which we call the Reuse monad. It only generates new identifiers when strictly
necessary, that is when an identifier is used twice. The definition of the monad is given
in listing 4.12. Its state contains both a fresh_st for identifier generation, and a set of
identifiers that are already used. When reuse_ident x is called, either the identifier has
not yet been used, in which case it is returned directly, or it has, and a fresh identifier is
returned.

Record reuse_st := {
fresh_st: fresh_st local unit;
used: PS.t;

}.
Definition Reuse A := reuse_st -> (A * reuse_st).

Definition reuse_ident (x : ident) : Reuse ident :=
fun st =>
if PS.mem x st.(used) then
let (y, st’) := fresh_ident (Some x) tt st.(fresh_st) in
(y, {| fresh_st := st’; used := st.(used) |})

else
(x, {| fresh_st := st.(fresh_st); used := PS.add x st.(used) |}).

Listing 4.12: Reuse monad Lustre/InlineLocal/InlineLocal.v:242

103

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.InlineLocal.InlineLocal.html#INLINELOCAL.inlinelocal_block
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.InlineLocal.InlineLocal.html#INLINELOCAL.Reuse

4. Front-End Compilation

4.9.3 Correctness

The correctness invariant for the compilation of local scopes is presented below. The
semantics of the source block are given under history H1. The second hypothesis states
the existence of a history H2 which refines H1 modulo substitution σ. H2 gives a semantic
to the blocks after application of the substitution σ. We know the exact domain of
this history and that it is well clocked. We then prove that there exists an history H3

which gives a semantics to the compiled block. In addition to the associations in H2, H3

associates a stream to each variable returned by the compilation function.

Invariant 4 (Compilation of local scopes Lustre/InlineLocal/ILCorrectness.v:516)

if G,H1, bs ⊢ blk

and H1 ⊑σ H2 and dom(H2) = Γ and Γ, bs ⊢ck H2

and
⌊
blk

⌋
σ
= (blks ′, xs)

then ∃H3, H2 ⊑ H3 ∧ dom(H3) = Γ + xs ∧ (Γ + xs), bs ⊢ck H3 ∧ G,H3, bs ⊢ blks ′

There are two difficulties in this proof. Both are related to the construction of the new
history H3. First, when encountering a block of local declarations, a new history actually
needs to be built. From the context, we know that G,H1, bs ⊢ var locs let blks tel,
and, from the second hypothesis of the invariant, that we have a history H2 that refines
H1 modulo substitution. By the first hypothesis, the semantic rules for local blocks
tell us that there exists a local history H ′

1 such that G, (H1 +H ′
1), bs ⊢ blks. We must

construct H ′
2, the projection of H ′

1 by substitution σ′ = fresh_idents(locs) to continue the
induction on sub-blocks. To do so, we use the inverse of a substitution σ−1, and define
H ′

2(x) = H ′
1(σ

′−1(x)). We then need to prove that all the pre-conditions of the invariant
hold for (H2 +H ′

2).
The second difficulty was alluded to in section 3.3.2. When treating the case of a

reset block, applying the induction hypothesis gives us an infinite family of histories H ′
k:

∀k, ∃H ′
k, H

′
k ⊑ maskk rs H2 ∧ dom(H ′

k) = Γ + xs

∧ (Γ + xs), (maskk rs bs) ⊢ck H ′
k

∧ G,H ′
k, (maskk rs bs) ⊢ blks ′

However, to prove the existence of a semantic model for the compiled reset block, we
need to construct a single history H3 such that ∀k,G,maskkrs (H3, bs) ⊢blks ′. This means
“combining” the infinite family of H ′

k into a single history. This is possible, since we
know that each H ′

k is correctly sampled by the masked base-clock. We cannot, however,
give a constructive proof that H3 exists. Indeed, we need to construct a single value
from an infinite number of values; which requires introducing the axiom of choice in our
formalization. This axiom is presented, as it is implemented in Coq, in listing 4.13. Given
a relation R between types A and B, the axiom posits that, if every element of A is in
relation with at least one element of B, then there exists a function which “chooses” the
element of B for any element of A.

104

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.InlineLocal.ILCorrectness.html#ILCORRECTNESS.inlinelocal_block_sem

4.10. Unnesting and Distribution

Axiom functional_choice: ∀ (A B : Type) (R : A -> B -> Prop),
(∀ (x : A), ∃ (y : B), R x y) ->
(∃ f : (A -> B), ∀ (x : A), R x (f x)).

Listing 4.13: Axiom of Choice in Coq

Using this axiom, we can prove lemma 13. For a given relation P , if, for all k, there
exists a history H such that the kth instance of H satisfies P , then there exists a single
history H such that for all instances of H, P is satisfied. We can finally use this lemma
to build a history H3 that gives a semantics to the compiled reset block.

Lemma 13 (Axiom of Choice applied to mask CoindStreams.v:2570)

if ∀k,∃H,P k (maskk rs H) then ∃H,∀k, P k (maskk rs H)

4.10 Unnesting and Distribution

The compilation passes presented in the previous sections have eliminated each of the
complex block structures from the program. To fit the normalized syntax of the language,
it remains to simplify the syntax of expressions and equations. The unnesting and
distribution pass achieves a first simplification step by isolating fby and node instantiations
in their own equations, and by distributing operators over their operands.

4.10.1 Compilation Function

The unnesting of an expression
⌊
e
⌋

produces a list of expressions due to distribution. For
example, the expression (x, y) when ck, would become (x when ck, y when ck). It also
produces a list of auxiliary equations due to unnesting.

Several cases of this function are presented in figure 4.10. Constants and variables are
not changed and do not add any new equation. Binary operators are treated recursively.
The expressions at left of a when are treated recursively and the original when is distributed
over the resulting expressions. For fbys, the recursively generated expressions are combined
pair-by-pair into new equations defining fresh variables. The case for node instantiations,⌊
f(es)

⌋
, is similar but does not require distribution after unnesting. We do not show the

cases for the merge or if, as they are similar to that of the fby. In the full definition, we
add special cases for subexpressions where unnesting is not required by the grammar of
figure 4.2. The aim is to minimize transformations to the original program. For instance,
if a fby or node instance already appears directly in an equation, there is no need to
unnest it. Finally, reset blocks are transformed by unnesting the condition in its own
equation, and distributing the reset operation over each unnested sub-block.

105

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.consolidate_mask_hist

4. Front-End Compilation

⌊
c
⌋
≜ ([c], [])⌊

x
⌋
≜ ([x], [])⌊

e1 ⊕ e2
⌋
≜ let ([e′1], eqs

′
1) :=

⌊
e1
⌋

in
let ([e′2], eqs

′
2) :=

⌊
e2
⌋

in
([e′1 ⊕ e′2], eqs

′
1 ∪ eqs ′2)⌊

es when C(x)
⌋
≜ let [ei]i, eqs ′ :=

⌊
es
⌋

in
([ei when C(x)]i, eqs ′)⌊

es0 fby es1
⌋
≜ let ([e0 ′i]

i, eqs ′0) :=
⌊
es0

⌋
in

let ([e1 ′i]
i, eqs ′1) :=

⌊
es1

⌋
in

([xi]
i, [xi = e0

′
i fby e1

′
i]
i ∪ eqs ′1 ∪ eqs ′2)⌊

f(es)
⌋
≜ let (es ′, eqs ′) :=

⌊
es
⌋

in
([xi]

i, [[xi]
i = f(es ′)] ∪ eqs ′)⌊

reset blks every e
⌋
≜ let [blk i]i :=

⌊
blks

⌋
in

let e′, eqs′ :=
⌊
e
⌋

in
[reset blk i every x]i ∪ [x = e′] ∪ eqs′

Figure 4.10: Unnesting of expressions Lustre/Unnesting/Unnesting.v:303

4.10.2 Correctness

As with the previous pass, reasoning about the correctness of this transformation revolves
around history extension. The central correctness invariant is presented below. Given
the existence of a semantics for the source expression under history H1, it states the
existence of a history H2 extending H1 which gives a semantics to the new expressions
and equations. In the proof, every time an unnesting happens, this history is constructed
by associating the newly introduced variables to the streams produced by the unnested
expression. The proof is straightforward but tedious due to the number of cases in the
syntax and the special cases defined to minimize the number of unnestings.

Invariant 5 Unnesting of expressions Lustre/Unnesting/UCorrectness.v:763

if G,H1, bs ⊢ e ⇓ vs and
⌊
e
⌋
= (es ′, eqs ′)

then ∃H2, H1 ⊑ H2 ∧ G,H2, bs ⊢ es ′ ⇓ vs ∧ G,H2, bs ⊢ eqs ′

4.11 Normalization of shared variables

While the NLustre language accepts shared (last) variables, it places three restrictions on
their placement and definition. First, shared variables may only be initialized by constant
expressions. This ensures that the state of the generated imperative code is initialized in

106

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.Unnesting.Unnesting.html#UNNESTING.unnest_exp
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.Unnesting.UCorrectness.html#UCORRECTNESS.unnest_exp_sem

4.11. Normalization of shared variables

constant time by a function that does not depend on inputs. Second, outputs may not be
declared with shared variables. This simplifies the definition of later languages, where
state variables cannot be used as outputs. Finally, equations may define variables used
with last with simple or control expressions, but not with fbys or node calls. Doing so
simplifies the compilation of later languages by making explicit each update of a state
variable. The first requirement is reflected by the normalized syntax presented in figure 4.2.
The other two are characterized as inductive predicates on the node.

The three requirements we describe above are simple, but they may overlap. Consider
the equations last y = y0; y = f(last y), where y is an output of the node being
defined. They violate each of the requirements defined above. However, simply applying
the transformation that eliminates last initialized by non-constants values (defined below)
is sufficient to fit all the restrictions. In the case of equations last y = 0; y = f(last y),
where only the second and third requirements are violated, two separate transformations
are necessary to eliminate the output last and the definition by y by a node application.
As we see, these combinations can make the compilation subtle, especially if we want
to produce efficient code. To avoid simplify the algorithms and proofs, we separate this
pass into three transformations, each treating one requirement. All of these passes are
structured in the same way. They (i) analyze the node to find which last needs to be
removed or renamed, (ii) generate new identifiers (using the Fresh monad) for these
lasts at the top-level scope and a substitution from old to new identifiers, and (iii) apply
this substitution to the sub-blocks of the top-level scope.

4.11.1 Initializing lasts with constants

First, we eliminate lasts initialized by non-constant expressions. There is no way to
compile such declarations using last only: they are instead transformed into fby equations.
This introduces unavoidable copies in the code and prevents the ideal compilation scheme
described in section 4.4.1.2. This is not so much a problem in real-world programs: ideally,
programmers initialize their shared variables with constants.

The compilation function is presented in figure 4.12. First, it calls nconst-lasts blk ,
which returns the set of last variables initialized by a non-constant expression in block
blk . These are the lasts which must be transformed. The substitution σ associates old
identifiers that appear in this set to fresh identifiers. By construction, σ only renames last
variables; other variables in the node are unchanged. These fresh identifiers are declared in
the top-level scope. The sub-blocks are compiled by applying the substitution recursively
to every sub-expression. The last initialization case is particular: if the variable of
interest appears in the substitution, then a fby equation is generated; otherwise, the last
equation is not changed.

Correctness The invariant for the compilation of local blocks is stated below. It relies
on the refinement of histories modulo substitution. This refinement is enough to give a
semantics to sub-expressions on which σ was applied. The most interesting case is for an
initialization equation last x = e, when last x appears in the substitution and a fby

107

4. Front-End Compilation

is-constant c ≜ true
is-constant C ≜ true

is-constant (e when C(X)) ≜ is-constant e
is-constant e ≜ false (otherwise)

nconst-lasts (xs = e) ≜ ∅
nconst-lasts (last x = e) ≜ if (is-constant e) then ∅ else {x}

nconst-lasts (reset blk every x) ≜ nconst-lasts blk

Figure 4.11: Non-constant last initializations Lustre/NormLast/NormLast.v:80

⌊
node f(ins) returns (outs) var locs let blks tel

⌋
≜

let σ := {last x 7→ last$x | x ∈ nconst-lasts blks} in
node f(ins) returns (outs) var locs + [σ(x) | x ∈ nconst-lasts blks] let

⌊
blks

⌋
σ
tel⌊

xs = e
⌋
σ
≜ xs = σ(e)⌊

last x = e
⌋
σ
≜

{
if last x ∈ σ then σ(last x) = σ(e) fby x

else last x = σ(e)⌊
reset blk every x

⌋
σ
≜ reset

⌊
blk

⌋
σ
every x

Figure 4.12: Explicitation of last initializations Lustre/NormLast/NormLast.v:136

equation is generated. Giving a semantics to the fby operator is direct, since the same
fby semantic operator is used to characterized both last and fby. The other obligations
are deduced directly from the refinement hypothesis.

Invariant 6 Explicitation of last initializations Lustre/NormLast/NLCorrectness.v:59

if G,H1, bs ⊢ blk and H1 ⊑σ H2 then G,H2, bs ⊢
⌊
blk

⌋
σ

While H1 is the history of the source program, to instantiate the invariant, we need
to provide H2, as well as a proof that semantic refinement holds. Again, we may build
H2 by applying reverse substitution on H1: we give H2(x) = H1(σ

−1(x)).

4.11.2 Removing lasts on outputs

The second pass removes lasts on node outputs. To do so, we introduce new local
variables that will be used as lasts instead of the outputs, and add appropriate copies.
The direction in which we introduce these copies is important. Consider the program
in figure 4.13 at left. There are two ways to compile it. The first, at top, inserts a new
local variable lx and copies output x to it. The left-hand-side of the equation defining
x is unchanged, while the right-hand-side is transformed, to change last x to last lx.
We thus loose the syntactic relation between x and its last value presented in the merge
equation of the source program. With this program, we would generate code akin to the

108

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormLast.NormLast.html#NORMLAST.non_constant_lasts
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormLast.NormLast.html#NORMLAST.init_top_block
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormLast.NLCorrectness.html#NLCORRECTNESS.init_block_sem

4.11. Normalization of shared variables

node f(b : bool) returns (x : int)
let
last x = 0;
x = merge b

(true => (last x + 1) when b)
(false => last x when not b);

tel

node f(b : bool) returns (x : int)
var lx : int;
let
last lx = 0;
x = merge b

(true => (last lx + 1) when b)
(false => last lx when not b);

lx = x;
tel

node f(b : bool) returns (x : int)
var lx : int;
let
last lx = 0;
lx = merge b

(true => (last lx + 1) when b)
(false => last lx when not b);

x = lx;
tel

bad normalization

good normalization

Figure 4.13: Two choices for normalization of last on output

one at bottom-left of figure 4.3, which does not allow us to remove the useless update of
the state variable in the branch where b is false. For this reason, it is better to generate
the program at the bottom, where x is also replaced with lx at left of the merge equation,
and where output x is defined as equal to lx.

The compilation function for this pass is presented in figure 4.14. In the compiler, each
declaration of a variable that is used with last is annotated so as to build the environment
of typing and clock-typing judgements. This means that the function does not need to
analyze definitions to find out which outputs are defined and used with last. For each of
these, the function introduces a fresh local variable and builds a substitution σ. It then
transforms the sub-block, and their sub-expressions. In expressions, the substitution is
applied only at points where the last value of a variable is read. Other variables are
unchanged. Applying

⌊
blk

⌋
σ

produces a list of blocks: the original block where renaming
by σ has been applied, and possibly some x = lx equations. The most interesting case
is the one for equations. Renaming is applied to the left-hand-side variable x and the
right-hand-side expression. If x is in the domain of σ, that is, if it was indeed renamed, it
also introduces an equation between the new and old identifiers. Renaming is also applied
at left of last initialization equations.

Correctness Refinement modulo substitution is not enough alone to state the cor-
rectness of this pass. Indeed, while last variables and declarations are systematically
renamed, other variables are only renamed when they appear at left of equations. This
transformation must be reflected in the history used to give a semantics to the new block.
We show the necessary relation between an old history H1 and a new history H2 in the

109

4. Front-End Compilation

⌊
node f(ins) returns (outs) var locs let blks tel

⌋
≜

let σ := {x 7→ last$x | last x ∈ outs} in
node f(ins) returns (outs) var locs + [σ(x) | last x ∈ outs] let

⌊
blks

⌋
σ
tel⌊

last x
⌋
σ
≜ last σ(x)⌊

x
⌋
σ
≜ x⌊

x = e
⌋
σ
≜

{
if x ∈ σ then σ(x) =

⌊
e
⌋
σ
;x = σ(x)

else x =
⌊
x
⌋
σ⌊

last x = c
⌋
σ
≜ last σ(x) = c⌊

reset blk every x
⌋
σ
≜ let [blk ′i]

i :=
⌊
blk

⌋
σ

in [reset blk ′i every x]i

Figure 4.14: Elimination of output lasts Lustre/NormLast/NormLast.v:225

invariant below. H2 must refine H1 modulo substitution, and also refine H1 directly for
every non-last variable. Under these preconditions, we prove that H2 gives a semantics
to the transformed block.

Invariant 7 (Elimination of output lasts Lustre/NormLast/NLCorrectness.v:402)

if G,H1, bs ⊢ blk
and H1 ⊑σ H2 and (∀x vs, H1(x) ≡ vs =⇒ H2(x) ≡ vs)
then G,H2, bs ⊢

⌊
blk

⌋
σ

Building a H2 that respects these constraints is a bit more involved, since last and
non-last variables are not transformed in the same way. We define H2 by

H2(last x) = H1(last (σ−1(x)))

H2(x) =

{
if x ∈ σ−1 then H1(σ

−1(x))
else H1(x)

It fits the requirements: H2 contains the streams associated to (i) renamed last variables,
(ii) renamed variables, and (iii) old variables. Using this history to instantiate the invariant
concludes the proof of semantics preservation.

4.11.3 Stateless definitions for lasts

The final pass removes last variables defined by either fbys or node instances. For
example, the equations last x = 0; x = 0 fby (last x + 1) are not allowed. They are
transformed into last lx = 0; x = 0 fby (last lx + 1); lx = x. Equations with node
instantiations are treated similarly.

The transformation function, presented in figure 4.16, first analyzes the blocks of the
node with the stateful-defs function, which returns the set of variables defined by stateful
equations. The set of variables to be renamed is the intersection of this set with the set

110

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormLast.NormLast.html#NORMLAST.output_top_block
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormLast.NLCorrectness.html#NLCORRECTNESS.rename_block_sem

4.11. Normalization of shared variables

stateful-defs (x = e0 fby e1) ≜ {x}
stateful-defs (xs = f(es)) ≜ {x | x ∈ xs}

stateful-defs (x = e) ≜ ∅
stateful-defs (last x = e) ≜ ∅

stateful-defs (reset blk every x) ≜ stateful-defs blk

Figure 4.15: Stateful definitions Lustre/NormLast/NormLast.v:246⌊
node f(ins) returns (outs) var locs let blks tel

⌋
≜

let xs := {x | last x ∈ locs ∧ x ∈ stateful-defs blks} in
let σ := {last x 7→ last$x | x ∈ xs} in
node f(ins) returns (outs) var locs + [σ(x) | x ∈ xs]
let

⌊
blks

⌋
σ
; [σ(x) = x | x ∈ xs] tel⌊

xs = e
⌋
σ
≜ xs =

⌊
e
⌋
σ⌊

last x = e
⌋
σ
≜ last σ(x) =

⌊
e
⌋
σ⌊

reset blk every x
⌋
σ
≜ reset

⌊
blk

⌋
σ
every x

Figure 4.16: Unnesting of last definitions Lustre/NormLast/NormLast.v:272

of local variables defined with last. From this set, the function generates fresh local
variables that will be used with last; as usual, we build a substitution σ from old to new
identifiers. This substitution is applied to sub-expressions and sub-blocks. Only last
variables are renamed in expressions.

The recursive function treating blocks is more straightforward than the one of the
previous pass: the variables at left of an equation are never renamed, because there is no
useful case where we would like to keep a relation between the left and right sides of a
stateful equation. Instead of renaming these left-hand-side variables, we introduce copy
equations from old to new identifiers directly at the top level.

Correctness Despite the differences between this pass and the previous, the correctness
invariant for this pass ends-up being identical to the one presented in invariant 7. This
makes sense for two reasons. First, as before, only last variables are renamed in
expressions; other variables are still read and keep their original streams. Second, the
direction of equations between old and new variables does not matter semantically. Indeed,
in our semantic model, equations x = y and y = x are equivalent, because they are just
constraints on the streams associated with x and y in the history.

Conclusion We have shown that each of the three transformation preserves the se-
mantics of a program. To define the normalization of last, we compose them to get a
pass that also preserves the semantics of a program. Our presentation of the semantic
correctness proof for these passes omitted, as always, a lot of administrative details around
the well-formedness of input programs. In the full Coq proof, these details turn out to

111

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormLast.NormLast.html#NORMLAST.non_cexp_defs
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormLast.NormLast.html#NORMLAST.unnest_top_block

4. Front-End Compilation

⌊
x = (e0 fby e1)

ck
⌋
≜

x = if xinit then e0 else px
xinit =

⌊
true

⌋
ck

fby
⌊
false

⌋
ck

px =
⌊
def ty

⌋
ck

fby e1

Figure 4.17: Normalization of fby equations Lustre/NormFby/NormFby.v:80

be cumbersome, as we must also show that they are preserved by the three sub-passes.
Having three separate proofs also means repeating a lot of boilerplate proof scripts.
Combining the passes directly might avoid this, but it would probably make the overall
proof much more complex.

4.12 Normalization of fby equations

As with last variables, there are additional constraints on the definition of fby equations.
First, as indicated in figure 4.2, fbys may only be initialized by constant expressions.
Second, the outputs of the node may not be defined directly by a fby. The next
compilation function normalizes the fby equations so that they respect these constraints.

4.12.1 Compilation Function

The compilation function is presented in figure 4.17. It transforms an equation of the
form x = e0 fby e1, where e0 is not already a sampled constant, into the three equations
shown at right. The equation for xinit is only true at the first instant of presence of
streams with clock type ck . Compiling

⌊
c
⌋
ck

adds whens around the constant c so that it
has the same clock as the initial fby. The equation for px delays the stream associated
with e. Its initial value is defty , an arbitrary constant of type ty . Since our language only
manipulates boolean, integer, and floating-point values, it is always possible to choose
such a constant (false, 0, 0.0). The value of the constant is never used in the definition
of x. These three equations are in normal form because only sampled constants are used at
left of the fbys. The subsequent transcription pass removes the whens from the constants.

Efficiency This schema is quite naive. For two equations containing fbys with the same
clock type, it produces two identical initialization equations. For example, the normaliza-
tion of (x, y) = (x0, y0) fby (y, x) would give rise to two equations identically defined
by true fby false. This is a performance issue, because each fby requires its own state
memory in the generated imperative code. Our first approach to avoid this inefficiency was
to use the state monad to memoize and reuse generated initialization equations. However,
this complicated the correctness proof, especially after the introduction of reset blocks
in the language. Instead, we keep the naive approach of adding initialization equations at
will, in the knowledge that the NLustre register deduplication optimization, presented in
section 5.2.3.3, will remove duplicates.

112

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormFby.NormFby.html#NORMFBY.normfby_equation

4.12. Normalization of fby equations

fby-co v0 (‹› · xs) ≜ ‹› · fby-co v0 xs

fby-co v0 (‹v› · xs) ≜ ‹v0› · fby-co v xs

Figure 4.18: Coinductive fby function CoindStreams.v:1410

4.12.2 Correctness

The core of the proof is to show that the semantics of an equation x = e0 fby e is
preserved in the new equations generated from it. As in previous proofs, the history is
extended to incorporate the new variables. An additional difficulty is to reason from the
semantics of the initial fby to show that expressions involving sampled constants, two
new fbys, and an if construction each also have a semantics, and that their composition
matches the original one.

Invariant 8 (Normalization of fby equations Lustre/NormFby/NFCorrectness.v:436)

if G,H1, bs ⊢ eq and G,Γ ⊢wc eq

then ∃H2, H1 ⊑ H2 ∧ G,H2, bs ⊢
⌊
eq
⌋

Slow constants cck The stream associated to a constant c can be given directly. Obtain-
ing the stream for a sampled constant

⌊
c
⌋
ck

is more difficult because it requires associating
the clock type ck with a stream. For instance, to prove that c when C1(b1) when C2(b2)
has a semantics, we must first establish that the clock • on C1(b1) on C2(b2) has one.
Thankfully, the invariants of the instrumented semantic model, presented in section 4.6
allow us to show the existence of this stream. Using these invariants and lemmas still
complicate the proof, as they require that the compiled program be well clocked.

Delay equations We must obtain streams for the fby expressions that define xinit
and px in the produced equations. To do so, we apply the coinductive fby-co function,
presented in figure 4.18, on the streams obtained for the slow constants or associated with
the expression e1 in the original fby equation. Note that this function is total because
the fby is initialized by a constant, and therefore there is no alignment issue.

Choosing a value with if Finally, we must show that the initial equation x = e0 fby e1
and its replacement x = if xinit then e0 else px denote the same stream. Applying
rule inversion to the semantic predicate for the former gives fby ys0 ys1 ≡ zs , that is, the
relevant semantic operator applied to streams associated with, respectively, e0, e1, and x.
From this and the results presented above, and a semantic operator for the conditional
operator, we can show that the constructed streams fulfill the semantic relation associated
with the if operator, and therefore give a semantics to this last equation.

113

https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.sfby
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.NormFby.NFCorrectness.html#NFCORRECTNESS.normfby_equation_sem

4. Front-End Compilation

4.13 Discussion and Related Works

4.13.1 Translation validation of synchronous dataflow programs

Auger [Aug13] describes a formally verified compiler for a Lustre-like language, based
on translation validation. Each transformation pass is specified by a relation between
source and target programs, implemented with two algorithms, and verified with two
proofs. First, an unverified analysis of the source program produces a certificate, that
is, a hint on how the program should be transformed. Then, an algorithm checks and
applies the certificate to transform the source program. The algorithm may fail if the
certificate, or source program, are ill-formed. If it succeeds, it is proven that the source
and target programs are related, according to the specification of the pass. In some cases,
the certificate may be the target program to generate itself, and the verified checker just
has to check that it is indeed in relation with the source program. Finally, a separate
proof establishes that two related programs have the same semantics.

Let’s give an example to make this more concrete. The first transformation imple-
mented is an unnesting pass, similar to the one we describe in section 4.10, minus the
distribution of operators which is implemented in a later pass. For this pass, the certificate
is a list of names to introduce in the node, a list of new equations binding the unnested
sub-expressions, and the list of old equations where sub-expressions have been unnested.
This first list of equations can also be seen as a substitution from patterns (left of equation)
to expressions (right of equation). To check that the certificate is correct, the checker
simply applies this substitution in the list of old equations. The result should be equal to
the list of equations of the source program. The relation that specifies this transformation
is the equality modulo substitution: intuitively e1

σ∼ e2 if applying σ to e1 produces e2.
This relation is defined inductively over the syntax of expressions. It is then easy to prove
that, if the substitution corresponds to valid equations, then e1 and e2 have the same
semantics.

Auger describes two ways in which this approach shines. First, the checker is simple,
and easy to verify against the relational specification of the pass. The proof of semantic
correctness is also easier to verify from a relational specification, without being burdened
by details of the implementation of an algorithm. By separating the proof in two, each
part is made simpler. Second, since the certificate generator is not formally verified, it is
easier to maintain and modify. In particular, this gives more freedom for experimenting
with different code-generation schemes.

There are two main drawbacks to this approach. First, having to recheck the certificate
causes a slight overhead in compilation-time; that being said, the checker algorithms
are often simple and efficient. More importantly, while the compiler may never silently
generate incorrect code, the checker might fail on a particular program, which would
cause the compiler to abort. This may be either because of a bug in the certificate
generator or because the checker cannot verify the certificate because it is too complex.
This is not critical, but may still be problematic for a compiler used in production. The
only way to mitigate these kinds of issues is with intensive testing. In Vélus, the two
passes implemented using translation validation are elaboration, and scheduling (which

114

4.13. Discussion and Related Works

we discuss in the next chapter). We have made efforts to test these passes and have found
some bugs in previous versions that led to the compiler aborting.

4.13.2 Generating Fresh Identifiers

4.13.2.1 Protecting the axiomatization

As discussed in section 4.2, the use of axiomatized functions may be unsound, and
introduce bugs in a compiler. In particular, the assumption made by Coq that all
functions are observationally pure, that is, ∀f x, (fx) = (fx), does not necessarily hold
for axiomatized OCaml functions. Boulmé [Bou21] proposes a strategy to avoid this
unsoundness. It consists in wrapping the type of a nondeterministic calculation in a
monad type: “A -> ??B represents the type of impure functions from type A into type B”.
Type ??B is axiomatized, but may be interpreted as B -> Prop, the type of predicates
over B. Under this interpretation, A -> ??B returns a predicate that characterizes all the
possible results of evaluating the impure function. During extraction, ??B is treated like B.
In other words, an OCaml function of type A -> B implements an axiom of type A -> ??B.

From this type of impure computations, Boulmé defines the “may-return” relation of
type ⇝: ??A -> A -> Prop, where k ⇝ a states that “k may return a”. In addition, he
axiomatizes and specifies the usual monadic operators with respect to the ⇝ relation.

• ret: A -> ??A
such that ret x⇝ y =⇒ x = y

• bind: ??A -> (A -> ??B) -> ??B
such that bind k1 k2 ⇝ b =⇒ ∃a, k1 ⇝ a ∧ (k2 a)⇝ b

Of course, any Coq function that uses the result of a non-deterministic computation
becomes non-deterministic, and this monad propagates to the whole code-base, as monads
do. However, the Vélus compiler passes that generate identifiers already use the Fresh
monad defined earlier. It would be interesting to combine our approach with this non-
determinism monad, to better protect the calls to gensym.

4.13.2.2 Generalized Monadic Approach

Nigron [Nig22, Chap.3] describes the use of a state monad to generate fresh identifiers.
The state of the monad is represented by a record with two fields: a counter and a trail
of already-generated identifiers; we did the same in our implementation. Unlike ours
however, the state does not encode any invariant of these fields by construction. Instead,
a monadic function is treated as an imperative program. Pre-and-post-conditions are
given as Hoare triples with separation logic [Cha20]. The non-duplication invariants on
the state are treated by this logic.

This approach is used to reimplement the SimplExpr pass of CompCert, which sim-
plifies the input language CompCert-C to the more restricted Clight language. This pass
is specified in two ways: an executable, monadic function, and a relational specification.
A first lemma establishes that the function respects the specification, and a second that

115

4. Front-End Compilation

programs related by the specification have the same semantics. Monadic reasoning is only
used for the first proof. The author states that transforming the original proof, which
reasons on generated identifiers explicitly, into a proof using separation logic reduces
proof size by around 35%. It is not obvious if following this approach would lead to the
similar gains in Vélus. First, our use of dependent invariants for monadic states is another
way to avoid administrative proofs, that would be redundant with the use of separation
logic. Second, the correctness of our passes are proven directly on the function, and not
using an intermediate relational specification of the transformation; we are not sure how
straightforward the proofs would be without this separation.

116

Chapter 5

Middle-End Compilation

In this final technical chapter, we describe the middle-end of the Vélus compiler, up to
the translation to the imperative Obc language. The first section describes this language,
its semantics, and the optimizations that may be defined at the imperative level. The
remainder describes the compilation of normalized Lustre programs into Obc programs.
The compilation scheme uses two other intermediate languages: NLustre and Stc, each
with its own semantic model. The sequence of compilation passes after our modifications
is presented in figure 5.1. The grayed-out passes are not discussed in this dissertation, as
they are not impacted by our changes.

Since all of these languages and compilation passes have already been described in
[PLDI17; POPL20; Bru20], we focus on the adaptations necessary to support the new
features added in this thesis: the generalized reset and the efficient compilation of last
variables. We repeat some of the central definitions and lemmas from previous work when
necessary and otherwise simply refer to the relevant section or figure in the previous work.

Nlustre

Stc

Obc

transcription

expression
inlining

dead equation
elimination

fby minimization

i-translation

cutting update cyclesscheduling

s-translation

fusion normalize
switch

dead update
elimination

add defaults
initializations

generation

Figure 5.1: Architecture of the Vélus middle-end

117

5. Middle-End Compilation

class ::= class cls { statedec* instdec* method * }

statedec ::= state x : ty

instdec ::= instance x : cx

method ::= method mx (var+) returns (var+) var var * { s }

e ::= c | C | x | state(x) | ⋄ e | e ⊕ e

s ::= skip
| x := e
| state(x) := e
| x * := cls(x).mx(e+)
| s ; s
| switch e { (| C => s)+ }

Figure 5.2: Abstract Syntax of the Obc Language Obc/ObcSyntax.v:249

5.1 The Obc target language

5.1.1 Syntax of Obc

Obc is a simple object-oriented language similar to the one introduced in [Bie+08, §4].
The full abstract syntax of Obc is presented in figure 5.2. An Obc class may contain
state variables and instances of other objects. Each class exposes some methods, which
take some inputs, return some outputs, and may update state variables and call methods
of sub-instances. The body of a method is composed of a single statement.

The simplest Obc statement is skip, which does nothing but is useful for compilation.
Statements that assign the value of an expression to a variable or state variable are
syntactically distinct. An Obc expression is either an enumerated or scalar constant, an
access to a variable or state variable, or an application of an operator on sub-expressions.
Variables can also be assigned to values returned by a call to a method of a sub-instance.
Sequencing statements s1;s2 means that s1 is executed first, followed by x2. Finally, the
switch contains an enumerated condition used to choose between its branches. In the
compiler, it is possible that some branches of the switch do not contain a statement, in
which case the execution falls back on a default branch. This facilitates an optimization
that removes the last branching instruction from the generated code. For concision, we
omit this feature from our presentation of Obc.

5.1.2 A compiled example

To introduce the compilation schemes described in this chapter, we give an example of
the compilation of a normalized Lustre program to Obc. Recall the drive_sequence node
presented in the introduction. Its normalized form is shown in figure 5.3, at top. We

118

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Obc.ObcSyntax.html#OBCSYNTAX.class

5.1. The Obc target language

node drive_sequence (step : bool) returns (mA, mB : bool)
var lmA, lmB : bool;
let
mB = l$mB;
l$mB = merge step

(false => last l$mB when not step)
(true => last l$mA when step);

mA = l$mA;
l$mA = merge step

(false => last l$mA when not step)
(true => not last l$mB when step);

last l$mB = true;
last l$mA = true;

tel

node motor(pause : bool) returns (ena, mA, mB : bool)
var step : bool;
let

(ena, step) = feed_pause(pause);
(mA, mB) = drive_sequence(step);

tel

class drive_sequence {
state l$mB : bool;
state l$mA : bool;

method step(step : bool)
returns (mA, mB : bool)
var stclmB : bool {
stclmB := state(l$mB);
switch step {
| false => state(l$mB) := state(l$mB)
| true => state(l$mB) := state(l$mA)
};
switch step {
| false => state(l$mA) := state(l$mA)
| true => state(l$mA) := not stc$l$mB
};
mB := state(l$mB);
mA := state(l$mA)

}

method reset() {
state(l$mB) := true;
state(l$mA) := true

}
}

class motor {
instance mA : drive_sequence;
instance ena : feed_pause;

method step(pause : bool)
returns (ena, mA, mB : bool)
var step : bool {
ena, step := feed_pause(ena).step(pause);
mA, mB := drive_sequence(mA).step(step)

}

method reset() {
drive_sequence(motorA).reset();
feed_pause(enable).reset()

}
}

Figure 5.3: Compilation of drive_sequence and motor to Obc

119

5. Middle-End Compilation

also include the motor node that composes drive_sequence with the feed_pause node.
This is not exactly the program produced by the front-end compiler. For readability,
we have shortened the name of some variables and eliminated some aliases. The actual,
step-by-step compilation of the drive-sequence node is detailed in appendix B. The
corresponding Obc code is presented underneath. Each node in the source program is
compiled to a class in the Obc code. Each instantiation of a node in the source program
is compiled to an instance in the Obc program. Each variable associated with a stateful
construct in the source program (last or fby equation) becomes a state variable of
the class. A class generated from a Lustre node contains two methods. The first, step,
takes the same inputs as the original node, executes one cycle of the dataflow program
which updates the state, and returns the corresponding outputs. The second, reset,
(re)initializes the state variables and sub-instances of the class.

Lustre equations are transformed into updates of variables or state variables. Node
instantiations are transformed into calls to the step method of the corresponding instance.
The control represented by sampling in Lustre is implemented by imperative switch
statements on enumerated conditions. Most importantly, while the order of equations
in the Lustre program does not matter, the statements of the Obc program have been
scheduled into a sequence where each instruction only uses variables that were assigned
before its evaluation.

5.1.3 Semantics of Obc

We now recall the formal semantics of Obc described in [Bru20, §4.1.2]. Figure 5.4
presents the important rules of this big-step semantic model. Judgement me, ve ⊢obc e ↓ v
indicates that expression e produces value v under memory me and environment ve. In
Obc, the notions of explicit presences and absences from the dataflow language are not
relevant. However, a value may be either defined, written ⌊v⌋ or undefined, written ⌊⌋.
The distinction between the notions of presence and definedness becomes clear when
looking at the first two rules of figure 5.4. A local variable x can always be read from
an environment ve, which we write ve(x), but this may return an undefined value. In a
program compiled from a dataflow source, the value of a variable should only be defined
in cycles where the corresponding synchronous value is present. In other words, this
notion of undefinedness encodes the absence of local variables. The behavior of state
variables is stricter. Reading from a state variable x is only possible if its value is defined
by the memory me. Indeed, since state variables are persistent through cycles, the value
of state(x) is always defined if it has been initialized: it is the last value assigned to
state(x).

The semantic judgment for Obc statements is written P,me, ve ⊢obc s ↓ me ′, ve ′, and
states that under global context P , statement s updates memory me and environment ve
to me ′ and ve ′. The rules for variable and state variable assignment are central to this
update. In both cases, if the expression at right of an assignment evaluates to a defined
value v, then the value of x in the environment (resp. memory) is updated, which we
note ve{x 7→ v} (resp. me{x 7→ v}). When evaluating a sequence of two statements,
the first one is evaluated in the original context ve,me, and the second in the updated

120

5.1. The Obc target language

me, ve ⊢obc x ↓ ve(x)
me(x) = v

me, ve ⊢obc state (x) ↓ ⌊v⌋

me, ve ⊢obc e ↓ ⌊v⌋
P ,me, ve ⊢obc x := e ↓ me, ve{x 7→ v}

me, ve ⊢obc e ↓ ⌊v⌋
P ,me, ve ⊢obc state (x) := e ↓ me{x 7→ v}, ve

P ,me, ve ⊢obc s1 ↓ me1, ve1 P ,me1, ve1 ⊢obc s2 ↓ me2, ve2

P ,me, ve ⊢obc s1; s2 ↓ me2, ve2

me, ve ⊢obc e ↓ ⌊Ci⌋ P ,me, ve ⊢obc si ↓ me ′, ve ′

P ,me, ve ⊢obc switch e{ [| Ci => si]i } ↓ me ′, ve ′

Figure 5.4: Selected semantic rules for Obc Obc/ObcSemantics.v:110

context ve1,me1; the final context ve2,me2 is the result of the evaluation of the second
statement. Finally, the condition of a switch statement evaluates to a constructor Ci.
The corresponding statement si is then evaluated. We do not present the rules for method
calls, as they are not directly relevant to our work.

The definitions we have presented above are almost identical to the ones presented in
earlier work. The only major difference is the extension of if-then-else into the more
general switch statement; this was part of the work of L.Brun on enumerated types. We
did not need to change Obc to support the generalized reset and last variables. This
also means that we did not have to update the function that compiles Obc into Clight,
nor its proof of semantics preservation.

5.1.4 Optimizations

The Obc code presented in figure 5.3 can be optimized to reduce branching and eliminate
redundant update instructions. Understanding these optimizations is key to understanding
some of the design choices in the middle-end of Vélus.

Fusion of Conditionals A first optimization aims at reducing the number of switch
statements in the program [Bie+08]. Indeed, each switch incurs branching in the generated
assembly code, which may increase execution time. The transformation that reduces the
number of switches is straightforward: two adjacent switches on the same condition are
fused into one. In the case of figure 5.3, the body of the step method of drive_sequence
contains two switches; fusion produces the code of listing 5.1, with only one switch. It
turns out that the definition and verification of this pass is affected by our compilation
scheme for last variables. Since the required changes are intertwined with the definition
of the compilation from Stc to Obc, we will come back to this pass in section 5.4.4.

121

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Obc.ObcSemantics.html#OBCSEMANTICS.stmt_eval

5. Middle-End Compilation

switch step {
| false => state(l$mB) := state(l$mB); state(l$mA) := state(l$mA)
| true => state(l$mB) := state(l$mA); state(l$mA) := not stc$l$mB
}

Listing 5.1: Obc code after fusion

Dead Update Elimination The second optimization removes useless state variable
updates. In the program of listing 5.1, there are two: state(l$mA) := state(l$mA)
and state(l$mB) := state(l$mB). Replacing these instructions by skip yields the pro-
gram presented in listing 5.2. All this pass does is remove instructions of the form
state(x) := state(x). The semantic correctness of this transformation is obvious, since
such instructions overwrite the memory with the value that was already in it.

In this example, the instructions removed correspond to equations defining variables
declared with last in the false branch of each merge. In turn, this corresponds to the
equations that were automatically added by shared variable completion. The simplicity
of this optimization is what motivates the inclusion of last variables throughout the
compiler, in contrast to the possibility of replacing them with fbys directly.

class drive_sequence {
state l$mB : bool;
state l$mA : bool;

method step(step : bool)
returns (mA, mB : bool)
var stclmB : bool {
stclmB := state(l$mB);
switch step {
| false => skip; skip
| true => state(l$mB) := state(l$mA); state(l$mA) := not stc$l$mB
};
mB := state(l$mB);
mA := state(l$mA)

}

method reset() {
state(l$mB) := true;
state(l$mA) := true

}
}

Listing 5.2: drive-sequence step method after optimizations

122

5.2. NLustre: a normalized dataflow language

e ::= c | C | x | last x | ⋄ e | e ⊕ e | e when C (x)

ce ::= merge x (C => ce)+ | case e of (C => ce)+ | e

eq ::= x = ce
| x = reset c fby e every x *

| last x = c every x *

| x+ = (reset f every x *) (e+)

var ::= x : ty on ck

nodedecl ::= node f (var+) returns (var+) var var * let eq+ tel

Figure 5.5: Abstract Syntax of the NLustre Language NLustre/NLSyntax.v:24

5.2 NLustre: a normalized dataflow language

We now go back to the first intermediate language used in Vélus, NLustre. It is more or
less a restricted form of the Lustre syntax described earlier. Its syntax is presented in
figure 5.5.

As in the normalized Lustre syntax presented in the previous chapter, stateless
expressions are split in two levels. First, a simple expression may be a constant, variable,
last variable, operation, or sampling by when. Second, a control expression may be
either a merge, a case, or a simple expression. An additional constraint, modeled by the
type-system, is that the branches of control expressions should be ordered by constructors,
that is, they should appear in the same order as in the type declaration. This restriction
simplifies the typing and semantic definitions of these intermediate languages, as well as
later compilation passes.

The language does not contain structured blocks anymore. Instead, four types of
equations are possible. First, equations with a control expressions at right. These
equations are compiled to code that does not update any state. The next three equations
are stateful: fby, last initialization, and node call. All of these equations may be reset
by a disjunction of reset conditions. These conditions are independent, and may be on
different clocks. The list of reset conditions may also be empty.

Compared to [Bru20, Figure 2.5], this version of NLustre has three major differences.
First, the presence of last, and last initialization equations. Second, the possibility of
resetting fby equations (as well as last initialization). Finally, the possibility of having
multiple reset conditions on a single stateful equation.

5.2.1 Semantic Models

The NLustre language might seem redundant with the more general Lustre language, but
having a separate, simpler AST has two benefits. First, it simplifies the definition and
verification of dataflow optimizations. Section 5.2.3 discusses two passes that optimize
NLustre programs.

123

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLSyntax.html#NLSYNTAX.equation

5. Middle-End Compilation

H , bs ⊢co e ⇓ vs H , bs ⊢ ck ⇓ (clock-of vs)

H , bs ⊢co eck ⇓ vs

Figure 5.6: Coinductive semantics of annotated expressions

Second, it simplifies the definition of the semantics and therefore facilitates defining
multiple semantic models for the language. Indeed, the semantics of NLustre are specified
by three distinct relational models. These models are shown to be equivalent, and progress
from a dataflow-based view of the language, to a transition-based view. This decomposes
and simplifies the proof of correspondence with the semantics of later intermediate
languages. These semantic models have already been presented in [POPL20; Bru20].
We only give a brief presentation of each below and highlight the changes necessary to
integrate the resetting of fby and last variables.

5.2.1.1 Coinductive Semantics

The first semantic model uses coinductive streams and is similar to the one of Lustre.
The semantic judgement for expressions is H, bs ⊢co e ⇓ vs. It does not require a global
environment G because expressions can not contain node calls. Additionally, vs represents
a single stream, as there are no lists of expressions in the normalized language. The rules
defining this judgement are similar to the ones presented in chapter 2.

To simplify correctness proofs, some of the rules in this model encode the clock-
correctness property discussed in section 3.5. The idea is similar to the instrumented
semantic model for Lustre from section 4.6, but implemented a bit differently. Instead of
encoding the property at variable declarations, this model encodes them at equations,
using a judgement for annotated expressions, which we write H, bs ⊢co eck ⇓ vs. The
unique rule for this judgement is presented in figure 5.6. An annotated expression eck

produces stream vs if e without its annotation produces vs and the clock of vs corresponds
to the interpretation of the clock type ck .

Our modifications to the compiler require only one change to the semantics of expres-
sions: adding a rule for last variables. Just as in the Lustre semantics, we do this by
adding the streams associated with last x to the history.

Equations require more work. Judgement G,H, bs,⊢co eq states that history H respects
the constraints induced by equation eq . The judgement is defined by four rules, one for
each type of equation. Our modifications did not affect the rules for stateless equations
and node calls presented in [Bru20, Figure 2.7]. We will focus on the rules for fby and
last initialization, which are both defined using the fby-co delay operator. This operator
was already present in [Bru20, Definition 2.3.3]. We recall the details in definition 6. It
takes as input an initialization value v0 and a stream vs. Whenever the value of vs is
present, v0 is produced and the value at head of vs is kept as the new initialization value.
Contrary to the operator used in Lustre, which takes two streams which must have the

124

5.2. NLustre: a normalized dataflow language

xs ‹› 1 ‹› 2 ‹› 1 ‹› ‹› 3 ‹› 4 . . .
rs F F F T F F T F F F F . . .

reset-co0F xs rs ‹› 1 ‹› 0 ‹› 1 ‹› ‹› 0 ‹› 4 . . .

Figure 5.7: Example behavior of reset-co

H , bs ⊢co eck ⇓ vs

∀i , H (xi) ≡ xsi bools-ofs [xsi]i ≡ rs H (x) ≡ reset-cocF (fby-co c vs) rs

G ,H , bs ⊢co x =ck reset c fby e every [xi]i

H (x) ≡ vs

∀i , H (xi) ≡ xsi bools-ofs [xsi]i ≡ rs H (last x) ≡ reset-cocF (fby-co c vs) rs

G ,H , bs ⊢co last x = c every [xi]i

Figure 5.8: Coinductive semantics for stateful equations NLustre/NLCoindSemantics.v:281

same clock as input, this operator is total. In Coq, we define it as a coinductive function
that produces a stream.

To define the semantics of the new resettable fby and last, we also define an operator
reset-op that resets a stream, that is, that inserts the initial value v0 every time the reset
signal is true. Additionally, a reset must occur even if it is triggered in an instant when
the value is absent. The operator reset-co in definition 6 implements this behavior: if
a true arrives on the rs stream while xs is absent, the pending true is passed to the
corecursive call to reset-co, and will trigger a reset when xs is present again. An example
of this behavior is illustrated in figure 5.7.

Definition 6 (fby-co and reset-co operators NLustre/NLCoindSemantics.v:192)

fby-co v0 (‹› · xs) ≜ ‹› · fby-co v0 xs

fby-co v0 (‹v› · xs) ≜ ‹v0› · fby-co v xs

reset-cov0r0 (‹› · xs) (r · rs) ≜ ‹› · reset-cov0(r0∨r) xs rs
reset-cov0r0 (‹v› · xs) (r · rs) ≜ ‹if (r0 ∨ r) then v0 else v› · reset-cov0F xs rs

Since fby-co and reset-co are both total functions, we can compose them to give a
semantics to both fby and last equations, as presented in figure 5.8. The partial bools-ofs
function transforms a list of value streams that only contain boolean values into a stream
of the point-wise disjunction of these booleans.

The two rules are similar: they relate the semantics of the initialization constant, the
stream associated with the delayed expression/variable, and the delayed and initialized
stream. This reflects how closely related the fby and last constructions are.

125

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLCoindSemantics.html#NLCOINDSEMANTICS.sem_equation
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLCoindSemantics.html#NLCOINDSEMANTICS.reset

5. Middle-End Compilation

∀n, (H (n)), (bs(n)) ⊢inst e ↓ (vs(n))
H , bs ⊢ind e ⇓ vs

Figure 5.9: Lifting instantaneous semantics IndexedStreams.v:447

5.2.1.2 Indexed Semantics

In the indexed semantic model, streams are represented as functions of type nat -> svalue,
where nat is the type of Peano natural numbers. Since these streams are just functions,
the nth element of stream xs is simply xs(n).

Furthermore, an expression is not related to an infinite stream of values, but rather to
an instantaneous synchronous value. These instantaneous semantics are specified by the
judgement R, b ⊢inst e ↓ v, where R is an instantaneous environment that maps a variable
name to a synchronous value, b is a boolean instantaneous clock, and v is a synchronous
value produced by the expression. The rules defining this judgement are presented
in [Bru20, Figure 2.8]. We simply extend them with a rule for last expressions; again,
this is treated by adding the instantaneous last values of variables in the environment
R. Using instantaneous semantics is possible because, since expressions are stateless, the
value of an expression at an instant only depends on the context at that instant. For
stateful equations, the semantic model still depends on the history of the node. The
instantaneous semantics of expressions are lifted to infinite stream semantics by the
rule presented in figure 5.9. History H and streams bs and vs are indexed to give the
instantaneous semantics for the nth instant.

The semantic rules for equations are similar to the coinductive ones, with the semantic
operators replaced by their indexed counterparts. The definition for the indexed fby-ind
was presented in [Bru20, Definition 2.3.7]. In the same style, we propose an indexed
reset-ind operator in definition 7. This operator returns a stream that is equal to its input
xs, except when xs is present and a reset must be performed. The do-reset auxiliary
function specifies that there is a “pending” reset at instant n either if rs(n) is true, or if
a true arrived since the previous presence of xs. Formally, do-reset xs rs n = true if and
only if there exists m ≤ n such that rs(m) = true and ∀k ∈ [m;n[, xs(k) = ‹›.

Definition 7 (Indexed specification of reset-ind NLustre/NLIndexedSemantics.v:67)

do-reset xs rs 0 ≜ rs(0)

do-reset xs rs (n+ 1) ≜ rs((n+ 1)) ∨ ((xs n) = ‹› ∧ do-reset xs rs n)

reset-indv0 xs rs ≜ λn.

if xs(n) = ‹› then ‹›
if xs(n) = ‹x› ∧ do-reset xs rs n then ‹v0›
if xs(n) = ‹x› then ‹x›

Correspondence between coinductive and indexed semantics These two semantic
models are equivalent. However, the compiler correctness proof only requires establishing

126

https://velus.inria.fr/phd-pesin/velusdoc/Velus.IndexedStreams.html#INDEXEDSTREAMS.lift
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLIndexedSemantics.html#NLINDEXEDSEMANTICS.reset

5.2. NLustre: a normalized dataflow language

that the indexed semantics simulates the coinductive semantics, as stated by the lemma
below. In the premise, the input and output streams are coinductive. To state the
conclusion, they must be converted to indexed streams; this conversion uses the indexing
operation on coinductive streams defined in listing 2.9 (page 26).

Lemma 14 (Coinductive to indexed semantics NLustre/NLCoindToIndexed.v:601)

if G ⊢co f([xs i]i) ⇓ [ysj]
j then G ⊢ind f([tr-Stream xs i]

i) ↓ [tr-Stream ysj]
j

where tr-Stream xs ≜ λn.(xs # n)

The proof of this result, already present in earlier versions of Vélus, is largely unchanged
by our modifications to the NLustre language and its semantic models. The only novel
obligation concerns the correspondence between the reset-co and reset-ind operators. The
lemma below states that the conversion of the stream produced by reset-co is equivalent
to the application of reset-ind to converted streams.

Lemma 15 (Coinductive to indexed reset NLustre/NLCoindToIndexed.v:201)

tr-Stream (reset-cov0F xs rs) ≈ reset-indv0 (tr-Stream xs) (tr-Stream rs)

where xs ≈ ys iff (∀n, xs(n) = ys(n))

5.2.1.3 Indexed Semantics with Memory

The final semantic model extends the indexed model by adding explicit state handling.
This model was designed as a bridge between the semantics of NLustre and that of the
next intermediate language.

The new elements in this semantic model are “memories”. An instantaneous memory
has two parts: (i) an environment storing the values of state variables, and (ii) an
environment storing the memories of sub-node instances. We mostly discuss the former,
as it is the most relevant for the fby and last constructs. The semantics of nodes is
given against a stream of instantaneous memories, which we note M . We write Mn(x)
for looking up the value of x at the nth instant in memory M , which is a partial function.
The memory is not the same as the history, for two reasons. First, the memory only
tracks the values of variables associated with stateful constructs (fby, last). Second, the
memory contains values, not synchronous values. The chronogram in figure 5.10 illustrates
this distinction, for an execution of equation y = 0 fby (y + x). Memory M(y) starts
with the value at left of the fby, and keeps it until x becomes present. In the next cycle,
it updates to the value of y + x. In a sense, the memory stores the “next” value of y. It
corresponds to an imperative behavior where the value of y would be updated at the end
of an instant, so that it may be read in the next instant.

In this model, the semantic judgement for nodes is written G,M ⊢mem f(xs) ⇓ ys. It
exposes the memory M of the node. In the next intermediate languages, the memory is
an object that is directly manipulated during the execution of the program. It is passed
as input, updated, and returned as an output. Exposing the memory in the semantic
rules is a first step in this direction.

127

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLCoindToIndexed.html#NLCOINDTOINDEXED.implies
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLCoindToIndexed.html#NLCOINDTOINDEXED.reset_impl

5. Middle-End Compilation

x ‹› 1 ‹› ‹› 2 4 ‹› 5 . . .
M(y) 0 0 1 1 1 3 7 7 . . .
y ‹› 0 ‹› ‹› 1 3 ‹› 7 . . .

Figure 5.10: Difference between history and memory, for y = 0 fby (y + x)

r F F F T F F F T F F . . .
x ‹› 1 2 4 ‹› 1 2 ‹› ‹› 1 . . .

M(y) 0 0 1 3 4 4 5 7 0 0 . . .
y ‹› 0 1 0 ‹› 4 5 ‹› ‹› 0 . . .

Figure 5.11: Example trace for y = reset 0 fby (x + y) every r

Our modification to this semantic model amounts to defining a semantic operator for
resetting stateful constructs. Resetting the value of a stream should also reset the value
in memory; this corresponds to the expected imperative behavior. Unlike in the previous
model, we did not find a way to cleanly separate the fby and reset operators, or to define
them as functions. This is because it is difficult to untangle their effects, and constraints,
on the memory. We instead follow the approach of [Bru20, Figure 3.7.a], and provide a
mfbyreset relation between the streams manipulated by a resettable fby, and the memory.

Definition 8 (Resettable fby in memory semantics NLustre/NLMemSemantics.v:77)

mfbyresetxv0 M xs rs ≈ ys

iff M0(x) = v0

and ∀n,

if xs(n) = ‹v› ∧ rs(n) = F then Mn+1(x) = v ∧ ys(n) = ‹Mn(x)›
if xs(n) = ‹› ∧ rs(n) = F then Mn+1(x) = Mn(x) ∧ ys(n) = ‹›
if xs(n) = ‹v› ∧ rs(n) = T then Mn+1(x) = v ∧ ys(n) = v0
if xs(n) = ‹› ∧ rs(n) = T then Mn+1(x) = v0 ∧ ys(n) = ‹›

This definition specifies how the value associated with x is updated in memory M .
Value v0 comes from the initialization constant, xs is the stream of the expression at right
of the fby, rs is the reset stream, and ys is the resulting stream. The relation constrains
M0(x) to be the initial value v0. For each instant n, there are four possibilities, depending
on the presence of xs(n) and the value of rs(n). Let’s first consider the two cases where
no reset occurs. If xs(n) is present, its value is put in memory for the next instant, and
the current value in memory is produced. If it is absent, then the value in memory is
kept for the next instant. If a reset happens, the changes are more involved. If xs(n) is
present, the reset is processed immediately: v0 is produced on the output stream, but
the value of xs(n) is stored in memory. If it is absent, then the initial value v0 overrides
the value in memory. An example trace for equation y = reset 0 fby (x + y) every r
is presented in figure 5.11. The first reset applies to y directly, but the second applies to
its memory at the next instant.

128

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLMemSemantics.html#NLMEMSEMANTICS.mfbyreset

5.2. NLustre: a normalized dataflow language

We do not present the formal semantic rules for the fby and last initialization
equations here. They closely follow their counterparts from the coinductive and indexed
models, with the composition of fby and reset operators replaced by the mfbyreset relation.

Correspondence with the indexed model The memory semantic model has been
proven equivalent to the indexed semantic model in both directions. Going from the model
with memory to the model without memory is direct: it suffices to erase the memory
constraints. The other direction is necessary to the correctness proof of the compiler and
more involved. To go from the indexed model to the memory model, we must exhibit
the existence of a memory stream that satisfies all the semantic constraints. The overall
lemma is presented in lemma 16.

Lemma 16 (Indexed to memory semantics NLustre/NLMemSemantics.v:695)

if G ⊢ind f(xss) ↓ yss then ∃M, G,M ⊢mem f(xss) ⇓ yss

The overall structure of our updated proof follows the one discussed in [Bru20, §3.3.1.3].
It proceeds by induction on the list of equations, building the memory stream variable-by-
variable. In the case of fby or last equations, the proof constructively provide the values
in memory at each instant (see line M(y) in figure 5.11) from the existing synchronous
streams. To do so, we define two intermediate constructive operators fbyreset and holdreset,
presented in definition 9.

Definition 9 (holdreset and fbyreset NLustre/NLIndexedSemantics.v:298)

holdresetv0 xs rs 0 ≜ v0

holdresetv0 xs rs (n+ 1) ≜

if xs(n) = ‹x› then x
if xs(n) = ‹› ∧ rs(n) = F then holdresetv0 xs rs n
if xs(n) = ‹› ∧ rs(n) = T then v0

fbyresetv0 xs rs ≜ λn.

if xs(n) = ‹› then ‹›
if xs(n) = ‹x› ∧ rs(n) = F then holdresetv0 xs rs n
if xs(n) = ‹x› ∧ rs(n) = T then v0

In particular, fbyreset is equivalent to composing fby-ind and reset-ind, as stated below.
The proof of this lemma requires an induction on the index of streams, and some intricate
case analysis on the values of xs and rs.

Lemma 17 (Composing fby-ind and reset-ind explicitly NLustre/NLIndexedSemantics.v:306)

fbyresetv0 xs rs ≈ reset-indv0 (fby-indv0 xs) rs

In the proof of memory existence, we use this form of the stream. We then use
lemma 18 to show that the mfbyreset relation holds. This lemma is almost immediate
by unfolding of the definitions of indexed stream equivalence (≈), mfbyreset and fbyreset,
and by by case analysis on xs(n) and rs(n).

129

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLMemSemantics.html#NLMEMSEMANTICS.sem_msem_node
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLIndexedSemantics.html#NLINDEXEDSEMANTICS.fbyreset
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLIndexedSemantics.html#NLINDEXEDSEMANTICS.reset_fby_fbyreset

5. Middle-End Compilation

⌊
c
⌋e
≜ c⌊

C
⌋e
≜ C⌊

x
⌋e
≜ x⌊

last x
⌋e
≜ last x⌊

⋄e1
⌋e
≜ ⋄

⌊
e1
⌋e⌊

e1 ⊕ e2
⌋e
≜

⌊
e1
⌋e ⊕ ⌊

e2
⌋e⌊

e when C(x)
⌋e
≜

⌊
e
⌋e

when C(x)⌊
merge x [(Ci => ei)]

i
⌋ce

≜ merge x (sort [(Ci =>
⌊
ei
⌋ce

)]i)⌊
(case e of [(Ci => ei)]

i)ckty
⌋ce

≜ case
⌊
e
⌋e

of (sort [(Ci =>
⌊
ei
⌋ce

)]i)⌊
e
⌋ce

≜
⌊
e
⌋e

Figure 5.12: Transcription of expressions Transcription/Tr.v:109

Lemma 18 (Building memory semantics for fby NLustre/NLMemSemantics.v:572)

if (∀n,Mn(x) = holdresetv0 xs rs n) then mfbyresetxv0 M xs rs ≈ fbyresetv0 xs rs

5.2.2 Transcription: From Lustre to NLustre

The transcription pass translates the Lustre AST into the NLustre AST. The proof of
correctness for this transformation targets the coinductive semantics of NLustre, which is
the most similar to the Lustre source semantics. In earlier versions of Vélus [EMSOFT21],
the transcription algorithm was trivial, as the program was already compatible with the
NLustre representation. For our more expressive language, both expressions and blocks
need to be transformed.

5.2.2.1 Transcription of Expressions

The functions that transcribe expressions are presented in figure 5.12. They both take
as input a Lustre expression. Function

⌊
e
⌋e transcribes it into a simple expression, and⌊

e
⌋ce into a control expression. Both of these functions are partial: they fail for Lustre

expressions that are not compatible with the syntax of simple or control expressions,
respectively. In Coq, these functions return in the Error monad.

The transcription of simple expressions is trivial. The transcription of merge and
case is more involved. Indeed, in NLustre, the branches of control expressions (merge,
enumerated case) must be ordered by constructors, that is, they must be in the same
order as in the type declaration. Since this restriction is not present in the source
Lustre language, the transcription must sort these branches. To do so, the function uses
Sorting.Mergesort, provided by the Coq standard library.

5.2.2.2 Transcription of Blocks

The function that transcribes Lustre blocks into NLustre equations is shown in figure 5.13.
For a stateless equation, it simply transcribes the control expression. The function

130

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Transcription.Tr.html#TR.to_cexp
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.NLMemSemantics.html#NLMEMSEMANTICS.holdreset_mfbyreset

5.2. NLustre: a normalized dataflow language

⌊
c
⌋c
≜ c⌊

C
⌋c
≜ C⌊

sc when C(x)
⌋c
≜

⌊
sc
⌋c

⌊
x = ce

⌋
xrs

≜ x =
⌊
ce
⌋ce⌊

reset blk every xr
⌋
xrs

≜
⌊
blk

⌋
(xr :: xrs)⌊

x = sc fby e
⌋
xrs

≜ x = reset
⌊
sc
⌋c

fby
⌊
e
⌋e

every xrs⌊
last x = sc

⌋
xrs

≜ last x =
⌊
sc
⌋c

every xrs⌊
xs = f(es)

⌋
xrs

≜ xs = (reset f every xrs)(
⌊
es
⌋e
)⌊

xs = (reset f every xr)(es)
⌋
xrs

= xs = (reset f every (xr :: xrs))(
⌊
es
⌋e
)

Figure 5.13: Transcription of blocks Transcription/Tr.v:258

must also flatten the Lustre reset blocks into reset conditions for the stateful NLustre
equations. To do so, the condition of each traversed reset block is accumulated into the
extra parameter xrs . When encountering a fby, a last equation, or a node instantiation,
xrs is added to the reset conditions of the transformed equation. In the case of fby and
last equations, the sampled initialization constant is simplified into either a scalar or
enumerated constant.

The invariant below states correctness for the transcription of blocks. Its conclusion
states that block blk compiled with xrs has a semantics under history H. Here, xrs is
the list of the conditions of the reset blocks surrounding blk in the source program.
Since blk is located under reset blocks, its source semantics must be given under H
masked by a reset stream rs, which is the disjunction of all boolean streams associated
with the conditions xrs. This invariant is intricate because in Lustre, reset blocks are
nested, while in NLustre, individual equations are reset. The invariant bridges the two
representations.

Invariant 9 (Transcription of blocks Transcription/Correctness.v:1545)

if ∀i,H(xrs i) ≡ rss i and bools-ofs rss ≡ rs

and ∀k, G, (maskk rs (H, bs)) ⊢ blk

then G,H, bs,⊢co
⌊
blk

⌋
xrs

The proof proceeds by induction on the syntax of Lustre blocks and normalized
equations. Each of the four major syntactic cases handled by the block compilation
function (stateless equation, fby/last, node call, nested reset block) raises a specific
difficulty in the correctness proof.

Case 1: Stateless equations Compiling a stateless equation ignores the reset condi-
tions. To prove that the scheme is correct, we must prove that the semantics of masking
can also be ignored for a stateless NLustre expression.

131

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Transcription.Tr.html#TR.block_to_equation
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Transcription.Correctness.html#CORRECTNESS.sem_blocktoeq

5. Middle-End Compilation

Lemma 19 (Unmasking of stateless expressions Transcription/Correctness.v:944)

iff (∀k, (maskk rs (H, bs)) ⊢co e ⇓ vs) then H, bs ⊢co e ⇓ vs

This lemma is stated on the coinductive semantics of NLustre, but it is easier to prove
in the indexed semantics, in which we can reason about the nth execution cycle. The
mask operator is simplified using an equivalent, indexed definition based on the count
function that returns the number of true values along a stream.

Lemma 20 (Indexed specification of mask CoindStreams.v:2427)

(maskk rs xs) # n =

{
xs # n if (count0 rs) # n = k
‹› otherwise

where
countk (F · rs) ≜ k · countk rs
countk (T · rs) ≜ (k + 1) · count(k+1) rs

To prove lemma 19, we must show that e has a semantics under H at any instant n.
Instantiating the hypothesis with k = (count0 rs) # n makes the masking transparent for
instant n, which completes the proof.

Case 2: fby and last For the case of fby equations, we must show the equivalence
between the masked fby operations from the Lustre semantics, and the composition of
the fby-co and reset-co operations from the NLustre semantics. This correspondence is
stated below: if the Lustre fby operator can be applied on all maskings of xs by rs, with
constant initial value v0, then we can give a semantics to the composition of fby-co and
reset-co with these same streams and initial value.

Lemma 21 (Masked fby to reset of fby-co Transcription/Correctness.v:661)

if ∀k, fby (const (clock-of (maskk rs xs)) v0) (maskk rs xs) ≡ (maskk rs ys)

then ys ≡ reset-cov0F (fby-co v0 xs) rs

The proof of this lemma also exploits the correspondence between coinductive and
indexed specification. Specifically, we use the indexed specification of ≡ from the Coq
standard library, presented below. Two streams are coinductively equivalent if they are
point-wise equivalent.

Lemma 22 (Indexed specification of EqSt)

xs ≡ ys iff (∀n, xs # n = ys # n)

The proof then proceeds by induction on n, and by case-analysis on the heads of
the xs and rs streams. We use some rewriting lemmas to simplify the applications of
coinductive operators (mask, const, etc...).

132

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Transcription.Correctness.html#CORRECTNESS.sem_arhs_mask
https://velus.inria.fr/phd-pesin/velusdoc/Velus.CoindStreams.html#COINDSTREAMS.mask_nth
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Transcription.Correctness.html#CORRECTNESS.fby_reset_fby

5.2. NLustre: a normalized dataflow language

Case 3: Node instantiation For node instantiations that do not yet have a reset
condition, the proof is straightforward, since the coinductive semantics of NLustre use
the same mask operator as that of Lustre. If the source equation already has a reset
condition, there is an additional complication. The masking of the source history must
be composed with that of the inputs and outputs of the instantiation. We discuss this
composition problem in more details in the paragraph on nested reset blocks.

Case 4: Reset blocks Finally, we must prove that invariant 9 is preserved when
traversing a reset block. In this case, the reset condition is accumulated in the list
xrs. Therefore, the application of the induction hypothesis to the sub-block must take
into account this new condition. Skipping some of the bookkeeping of the proof, if rs1
is the stream associated with the reset conditions passed as parameters, and rs2 is the
stream associated with the reset condition of the block being compiled, reconstructing
the inductive invariant for the sub-block requires proving the lemma below.

Lemma 23 (Decomposition of mask Transcription/Correctness.v:1259)

∀rs1 rs2 k, ∃k1 k2, maskk (rs1 ∨ rs2) xs ≡ maskk2 rs2 (maskk1 rs1 xs)

It states that, for any instance k of the masking of a stream xs by a disjunction of
reset streams rs1 ∨ rs2, there are two indexes k1 and k2 such that the composition of the
masking by k1/rs1 and k2/rs2 produces the same instance. In the indexed setting, k1 and
k2 must be chosen such that (maskk2 rs1 (maskk1 rs2 xs))#n = (maskk (rs1 ∨ rs2) xs)#n.
This equation is simplified using the indexed specification of mask from lemma 20.

Finding k1 and k2 constructively is not possible. Indeed, it would require a procedure
that, given rs and k, decides if there exists n such that (count0 rs) # n = k. This would
be equivalent to writing an index-of function which finds the index of a given value in
a stream. In Coq, this is not possible, because streams are infinite, and therefore the
index-of function would not necessarily terminate. We have not found any constructive
way of sidestepping this issue. Instead, we use the excluded middle principle from classical
logic. By applying this axiom, we prove the lemma below: either there exists an n such
that the count reaches k at index n, or there is none.

Lemma 24 (Excluded middle applied to count Transcription/Correctness.v:1167)

∀rs k, (∃n, (count0 rs) # n = k) ∨ (∀n, (count0 rs) # n ̸= k)

We apply this lemma to k and rs1 ∨ rs2. In the first case, we can instantiate
k1 = (count0 rs1) # n and k2 = (count0 rs2) # n. The second case implies that k is too
big, that is, there are only a finite number of trues in rs1 ∨ rs2, and k is bigger than this
number. Therefore, k is bigger than the number of trues in both rs1 and rs2. Choosing
any k1 and k2 that are superior or equal to k results in an equivalent opaque masking.

We are somewhat disappointed to need classical logic in this proof, while most of the
other proofs in the compiler only use constructive reasoning. In addition, we have seen in

133

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Transcription.Correctness.html#CORRECTNESS.mask_disj
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Transcription.Correctness.html#CORRECTNESS.count_ex_dec

5. Middle-End Compilation

section 4.9.3 that the treatment of reset blocks also requires the axiom of choice. Both
of the issues stem from the use of universal quantification in the semantic rules for reset
blocks, which prevents constructive reasoning. We have not found a formalization for the
semantics of reset blocks that does not need this quantification and integrates with the
source semantics of Vélus. For now, our conclusion is that since our semantics is based
on relational predicates that manipulate infinite objects, some non-constructive reasoning
may be unavoidable. This is the same conclusion reached in [LG09], where some of the
proofs on a coinductive semantic model require classical reasoning.

5.2.3 NLustre Optimizations

The AST and semantic definitions of NLustre are simpler than those of Lustre. This
simplicity facilitates the definition and verification of optimizations on dataflow programs.
In this section, we describe three dataflow optimizations implemented in Vélus.

5.2.3.1 Expression Inlining

This first pass is not an optimization in-and-of itself. Instead, it facilitates later optimiza-
tions. The expression inlining pass consists in replacing local variables defined by simple
expressions with their definition. For instance, the equations y = x; x = x1 + x2 can
be rewritten into y = x1 + x2; x = x1 + x2. The equation defining x is not removed by
this pass, but will be removed by the following dead equation elimination pass. The pass
applies this transformation for any local variable x such that either x is used only once in
the node or x is defined by an expression that does not induce any computation: either
a constant or variable, possibly sampled by when, but not applications of arithmetic or
logic operators. These criteria guarantee that calculations are never duplicated.

This transformation has several benefits. First, it reduces the number of variables
and equations, and therefore assignments in the generated Obc/C program. This
does not necessarily make the generated code more efficient, because the register al-
location used in the C compiler usually eliminates useless assignments. However, it
does make the code more readable. More importantly, this transformation facilitates
the elimination of dead updates implemented in Obc. Indeed, suppose the equa-
tions x = merge c (true => x$1) (false => x$2); x$2 = last x when not c. Compil-
ing these equations to Obc generates the statements x$2 = state(x); state(x) = x$2.
If we apply the transformation, and replace x$2 by its definition, the generated Obc
statement would simply be state(x) := state(x), which can be optimized away easily.
This example is relevant, because this is exactly the shape of the equations generated by
our compiler for a switch block, such as the one used in the drive_sequence node. This
transformation is therefore necessary in order to easily compile away the dead updates
generated from partial definitions in the source program.

134

5.2. NLustre: a normalized dataflow language

Free(x) ≜ {x}
Free(last x) ≜ {last x}

Free(⋄ e1) ≜ Free(e1)
Free(e1 ⊕ e2) ≜ Free(e1) ∪ Free(e2)

Free(e when C(x)) ≜ Free(e) ∪ {x}
Free(merge x [(Ci => ei)]

i) ≜ {x} ∪ (
⋃

i Free(ei))
Free(case e of [(Ci => ei)]

i(_ => ed)) ≜ Free(e) ∪ (
⋃

i Free(ei)) ∪ Free(ed)

Free(x = e) ≜ Free(e)
Free(xs = (reset f every xrs)(es)) ≜ xrs ∪ Free(es)
Free(x = reset c0 fby e every xrs) ≜ Free(e) ∪ xrs

Free(last x = c0 every xrs) ≜ xrs

Figure 5.14: Free variables in NLustre NLustre/IsFree.v:30

Def(x = e) ≜ {x}
Def(xs = (reset f every xrs)(es)) ≜ xs

Def(x = reset c0 fby e every xrs) ≜ {x}
Def(last x = c0 every xrs) ≜ {last x}

Figure 5.15: Variables defined by an NLustre equation NLustre/IsDefined.v:35

5.2.3.2 Dead Equation Elimination

The compilation of switch blocks described in section 4.8 introduces sampling equations,
some of which may be useless. For efficiency, we need to remove these useless equations, as
well as possible useless, or dead, equations and variables from the original source program.
A variable is dead if (i) it is not an output of the node, and (ii) it is not read in any other
equation of the node. An equation is dead if it only defines dead variables. And so on
by transitive closure. The simplicity of these definitions highlights why we implement
this pass in NLustre: in a dataflow program, the uselessness of a variable in defining the
output of a node is syntactical. In an imperative language, where an instruction may
modify a global state, this definition is not as simple.

Node dependency analysis The function that determines the dead variables of a
node uses a simple graph analysis. It first builds the dependency graph of the node.
The function Free presented in figure 5.14 calculates the set of free variables in NLustre
expressions and equations. Since the goal is to determine which variables are unused,
we are not interested in instantaneous dependencies, but on any dependency between
variables of the node. Therefore, the free variables at right of a fby are taken into
account. The Free function also makes a distinction between the last and current values
of variables even though this distinction is not important for this pass; we reuse these
definitions other contexts. The Def function collects the set of variables defined by an

135

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.IsFree.html#ISFREE.Is_free_in_eq
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.IsDefined.html#ISDEFINED.Is_defined_in_eq

5. Middle-End Compilation

equation. Again, the distinction between x and last x does not matter for this pass.
These functions are used to build a dependency graph for the node. The vertices of

the graph are the variables of the node. For each equation eq , for each pair (x, y) where
x is defined with or without last by eq and y is free with our without last in eq , there
is an arc from x to y.

Variable (gr : Env.t PS.t).

Definition traverse_one (wh gr : PS.t) (x : ident) :=
let ps := match Env.find x gr with

| Some ps => ps
| None => PS.empty
end in

PS.fold (fun y ’(wh, gr) => (wh / y, if y ∈ wh then { y } ∪ gr else gr))
ps (wh / x, gr / x).

Function unreachable whgr
{measure (fun ’(wh, gs) => (PS.cardinal wh + PS.cardinal gs)) whgr} :=
match choose (snd whgr) with
| None => (fst whgr)
| Some x => unreachable (traverse_one (fst whgrs) (snd whgrs) x)
end.

Listing 5.3: Unreachable vertices NLustre/DeadCodeElim/DCE.v:169

Graph Analysis A variable is dead if and only if the corresponding vertex in the graph
is unreachable from the output variables. To compute the set of unreachable vertices we
implement a simple reachability analysis by traversal of the graph. We use some common
set notations to make the code more readable. The graph to be analysed gr is passed
as an invariant parameter. It is represented as an associative map from each vertex to
the set of variables it depends on (Env.t PS.t). The main function is unreachable. Its
argument, whgr, is a pair of a set of white vertices that have not been visited, and grey
vertices that are queued to be visited. Initially, the white set contains all vertices, and
the grey set contains all output variable vertices. The algorithm proceeds by choosing
one vertex x in the grey set and calling the traverse_one function on it. This function
removes x from the grey set. Then, for each y that x depends on, if y is still in the white
set, it is transferred from the white to the grey set. The unreachable function is then
called recursively on the new white and grey sets. The algorithm ends when the grey set
is empty. At this point, all the remaining vertices in the white set are unreachable from
the original grey set and the corresponding variables are therefore dead.

The unreachable function is defined using the Coq Function command. It is similar
to the Program Fixpoint extension that we used to define the Lustre dependency analysis,
as it sidesteps the guarded recursion criteria of Coq by defining a decreasing measure
on one of the arguments. It is a bit more limited than Program Fixpoint: only proof
obligations related to the termination of the algorithm may be solved separately. This

136

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.DeadCodeElim.DCE.html#DCE.compute_unused

5.2. NLustre: a normalized dataflow language

⌊
node f(ins) returns (outs) var locs let eqs tel

⌋
≜

let dead := dead-in-node outs locs eqs in
let locs ′ := [x | x ∈ locs ∧ x /∈ dead] in
let eqs ′ := [eq | eq ∈ eqs ∧ (∀x, (x ∈ Def(eq) ∨ last x ∈ Def(eq)) =⇒ x /∈ dead] in
node f(ins) returns (outs) var locs ′ let eqs ′ tel

Figure 5.16: Dead Equation Elimination in a node NLustre/DeadCodeElim/DCE.v:584

means that Function does not facilitate reasoning with dependant types. However, it
does generate a functional induction scheme that we can use to reason a posteriori on the
function. This is useful since we need to establish several properties of unreachable to
prove the correctness of the pass.

Node transformation The full transformation for a node is described in figure 5.16.
Function dead-in-node first determines the set of dead variables in the node by applying
the unreachable analysis. Then, it filters the local variables, keeping only those that do
not appear in the dead set, and also the list of equations, keeping only the ones that do
not define variables in the dead set.

Correctness The proof of semantic preservation for this pass is trivial, and requires less
than 30 lines of proof. This is unsurprising: the only transformation is removing variables
and equations. Since each equation defines semantic constraints on a history, removing
equations can only remove constraints, and never add new ones, and the implication of
source to target semantics is trivially true.

While the semantics preservation proof is trivial, some effort is still required to
prove the preservation of static invariants of a node, such as typing and clock typing.
In particular, removing local variables may make an expression ill-typed if it refers to
variables that were removed. To prove that this never happens, we first need to prove
that the node dependency analysis is complete, that is, that it covers every possible
dependency. Then we need to prove that the reachability analysis is correct, as specified
by the lemma below. For each vertex x in the dead set, if another vertex y depends on x,
then y must also be in the dead set. This ensures that any equation that previously used
variables that have been removed has also been removed. This result is used in most of
the proofs of preservation of static invariants for this pass.

Lemma 25 (Correctness of unreachable NLustre/DeadCodeElim/DCE.v:257)

if unreachableG (wh, gr) = dead and x ∈ dead

then ∀y, x→G y =⇒ y ∈ dead

137

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.DeadCodeElim.DCE.html#DCE.dce_node
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.DeadCodeElim.DCE.html#DCE.compute_unused_stable

5. Middle-End Compilation

node f (x, y : int) returns (z : int)
var t1, t2, fby$2, fby$4 : int;

fby$1, fby$3 : bool;
let

fby$1 = true fby false;
fby$2 = 0 fby t1 + 1;
t1 = if fby$1 then x else fby$2;
fby$3 = true fby false;
fby$4 = 0 fby t2 + 1;
t2 = if fby$3 then y else fby$4;
z = t1 + t2;

tel

node f (x, y : int) returns (z : int)
var t1, t2, fby$2, fby$4 : int;

fby$1 : bool;
let

fby$1 = true fby false;
fby$2 = 0 fby t1 + 1;
t1 = if fby$1 then x else fby$2;
fby$4 = 0 fby t2 + 1;
t2 = if fby$1 then y else fby$4;
z = t1 + t2;

tel

Figure 5.17: Optimizing duplicate fby equations

5.2.3.3 Fby Minimization

The fby-normalization pass of section 4.12 may introduce duplicate true fby false
equations when normalizing fbys that are not initialized by constants. For instance, fby-
normalization could generate the code shown in figure 5.17 at left, where variables fby$1
and fby$3 are defined by the same expression and have the same clock type. Additionally,
we have observed that source programs may also contain redundant fbys, for example, in
expressions of the form 0 fby x that access the previous value of x at multiple points in
a program. Since each fby equation induces a separate state variable in the generated
code, and uses thus more memory, it is useful to minimize their number.

Computing equivalence classes If two fby equations generate the same stream,
only one need to be kept. For instance, in figure 5.17, the program at left should
be transformed into the one at right. In the compiler, this semantic equivalence is
approximated syntactically: two fby equations are considered equivalent if they have the
same initialization constant, update expression and set of reset conditions. The function
presented in figure 5.18 analyses the equations in a node to compute the equivalence
classes. The function fbys cls eq processes equation eq in a context where the set of
classes cls have already been determined from previous equations. Each class in cls is
represented by the variable defined by the primary fby equation of the class along with
its initialization constant, update expression and reset conditions. The function returns
an updated set of classes, and a substitution from the variables defined by secondary fbys
to the ones defined by primary fbys. If eq is a fby equation, the function checks if its
parameters correspond to any of the classes in cls . If so, this fby is secondary, because it
is a duplicate from another fby that has already been analysed. A substitution from its
identifier to the primary one is returned. If not, this fby is primary: the list of classes is
extended with it and the empty substitution is returned. In all cases where eq is not a
fby equation, the classes cls are unchanged and the empty substitution is returned.

138

5.2. NLustre: a normalized dataflow language

fbys cls (x = reset c0 fby e every xrs) ≜

{
if (y, c0, e, xrs) ∈ cls then cls, {x 7→ y}

else cls ∪ {(x, c0, e, xrs)}, id
fbys cls eq ≜ cls, id

fbys cls ϵ ≜ cls, id
fbys cls (eq ; eqs) ≜ let cls1, σ1 := fbys cls eq in

let cls2, σ2 := fbys cls1 eqs in
cls2, (σ1 ◦ σ2)

Figure 5.18: Computing fby equivalence classes NLustre/DupRegRem/DRR.v:53⌊
var locs let eqs tel

⌋
≜

let _, σ := fbys ∅ eqs in
let locs ′ := [x | x ∈ locs ∧ x /∈ dom(σ)] in
let eqs ′ := [

⌊
eq
⌋
σ
| eq ∈ eqs ∧ (∀x, x ∈ Def(eq) =⇒ x /∈ dom(σ))] in

var locs ′ let eqs ′ tel

Figure 5.19: Removing duplicate registers NLustre/DupRegRem/DRR.v:136

The fbys function is applied to a list of equations by abuse of notation. When the
list is empty, the classes are left unchanged and the substitution is empty. The head of
the list is treated first, potentially adding a new class, the new set of classes cls2 is then
passed to the recursive call for the tail of the list. The substitution from the head and
tail of the list are then combined.

Transformation of the node The node transformation is presented in figure 5.19. It
first computes the substitution of secondary to primary fby equations. It then filters the
local variables to keep only those that do not correspond to secondary fbys. Finally, it
filters the equations, and applies the substitution to the expression of each remaining
equation. An alternative to applying a substitution would be to simply introduce copy
equations from primary to secondary variables, but this would make the code longer
without necessarily simplifying the proofs.

Correctness of the transformation The semantic preservation proof for this pass
consists in composing two main lemmas. The first, lemma 26, is similar to many lemmas
from the previous chapter. It states that, if an equation eq has a semantics under history
H, and if H refines itself modulo substitution σ, then the renamed equation also has a
semantics under H.

Lemma 26 (Renaming correctness NLustre/DupRegRem/DRRCorrectness.v:252)

if G,H, bs ⊢ind eq and H ⊑σ H then G,H, bs ⊢ind
⌊
eq
⌋
σ

139

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.DupRegRem.DRR.html#DRR.find_duplicates
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.DupRegRem.DRR.html#DRR.remove_dup_regs_eqs_once
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.DupRegRem.DRRCorrectness.html#DRRCORRECTNESS.subst_sem_equation

5. Middle-End Compilation

Since this pass does not introduce any new variables, the history does not change.
This makes the second hypothesis of the lemma quite strong: to establish it, we need to
prove that for each association σ(x) = y, x and y are associated to the same stream in H.
To do so, we first establish in lemma 27 a syntactic property of the fbys function: any
association between variables x and y in the substitution means that the source program
contains equivalent fby equations for x and y. This property is proven by induction on
the list of equations and by case-analysis on the definition of the fbys function.

Lemma 27 (Correctness of fbys NLustre/DupRegRem/DRR.v:241)

if fbys ∅ eqs = (cls ′, σ) and σ(x) = y

then ∃c0 e xrs, (x = reset c0 fby e every xrs) ∈ eqs

∧ (y = reset c0 fby e every xrs) ∈ eqs

After obtaining this result, we use a result on the semantic determinism for fby
equations to establish the second hypothesis of lemma 26 and complete the overall proof
of semantic preservation.

5.2.3.4 Other possible optimizations

The two optimization passes that we just described are fairly uncomplicated, the main
aim being to eliminate inefficiency introduced by previous compilation passes to simplify
the corresponding correctness proofs. The fact that the optimizations may also remove
some inefficiencies from the source code is a bonus. More optimizations could be treated
at the NLustre level. We describe three possible optimizations, and the difficulties we
think their verification may pose.

Node inlining Each node instantiation in the dataflow program induces a function call
in the generated imperative code, and possibly some manipulations of the data structure
used for outputs. This incurs a run-time cost. To avoid it, the compiler could inline the
definitions of some nodes at their instantiation site.

The listing at left of figure 5.20 shows a normalized form of the count_up node described
in the introduction, and a node that specializes it to count the number of trues of input
b. The listing at right shows the result of inlining the count_up instance in cnt_true.
The input parameter of count_up, inc, is bound to the argument expression 1 when b.
The local variable c is bound to the output parameter o. This example highlights one
subtlety of this transformation: since the call to count_up is sampled by b, all the variable
declarations and constants in the inlined code must be sampled as well. This is essentially
the same as specializing the type of a polymorphic function. Another subtlety not
represented here is that some of the declarations of the inlined node may need to be
renamed to avoid conflicts with names used in the instantiating node or other inlined

140

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustre.DupRegRem.DRR.html#DRR.find_duplicates_spec

5.2. NLustre: a normalized dataflow language

node count_up(inc:int) returns (o:int)
var norm$1 : int32;
let

norm$1 = 0 fby o;
o = norm$1 + inc;

tel

node cnt_true(b:bool) returns (y:int)
var c:int when b; py:int;
let

c = count_up(1 when b);
y = merge b

(true => c)
(false => py when not b)

py = 0 fby y;
tel

node cnt_true(b:bool) returns (y:int)
var inc, norm$1, o, c: int when b;

py: int;
let

inc = 1 when b;
norm$1 = (0 when b) fby o;
o = norm$1 + inc;
c = o;
y = merge b

(true => c)
(false => py when not b)

py = 0 fby y;
tel

Figure 5.20: Inlining of the count_up node

nodes. Finally, if the node to be inlined is called with reset, inlining also needs to
distribute its reset conditions over the stateful equations of the inlined node.

We believe that these three difficulties would create most of the complications in any
semantic preservation proof. Indeed, this would be akin to combining the difficulties
of (i) the sampling from switch compilation (section 4.8), (ii) the renaming from local
scope flattening (section 4.9), and (iii) the distribution and application of reset from
unnesting/transcription (sections 4.10 and 5.2.2). To avoid this, a solution could be to
treat inlining earlier, in the Lustre language, where the pass could at least introduce local
scopes and reset blocks to shift the last two difficulties to the corresponding compilation
passes.

Additionally, not all node instantiations should be inlined. Indeed, in some cases,
inlining leads to an increase in code size that outweighs the gains of eliminating a function
call. To judge if a node should be inlined or not, we would need to implement a heuristic
based on the complexity of the node to be inlined, the number of parameters, etc. This
heuristic would not need to be formally verified, as it does not modify the code but
only decides whether or not it should be modified. It could therefore be implemented
separately, possibly as an OCaml function.

Constant propagation Another useful optimization would be to statically evaluate
expressions when possible. For example, programmers commonly write bit-wise manipu-
lations using bit-shift operators: we could for example reduce 1 << 4 into 16 at compile
time. This may be particularly useful when combined with the inlining optimization: if
a node is instantiated with constant parameters, its inlined body may contain a lot of
reducible expressions.

141

5. Middle-End Compilation

It is not clear if implementing this optimization in Vélus would improve performances
directly; indeed, CompCert already performs constant propagation at the Register Transfer
Language (RTL) level [Ler09a, §7.2]. However, it might still facilitate other optimizations
by producing simpler expressions and therefore improving the number of successful
syntactic comparisons.

Implementing this optimization in NLustre would not pose too many difficulties: recall
that the semantics of CompCert operators are specified as partial functions, as presented
in listing 2.3. To simplify an operation of the form c1 ⊕ c2, we can simply apply the
corresponding operator at compile time on the values associated with constants c1 and c2.
Since we are using the semantic operator itself, the semantic correspondance proof for this
reduction would be trivial. In order to fully reduce all possible expressions, this reduction
would also need to be interleaved with the expression inlining pass. For instance, to
simplify x = 1 + 2; y = x * 3, we would first reduce 1 + 2 into 3, then replace x with 3
everywhere it is used, including the equation for y, and then reduce 3 * 3 into 9. This
mechanism of reduction/rewriting needs to be repeated until a fixed point is reached: this
means defining the compilation function as a Coq recursive function with a decreasing
measure on the body of the node being transformed. We would most likely need to use a
function of the numbers of operators and variables appearing in the node.

Dataflow minimization The optimization we introduced to deduplicate redundant
fby equations is limited. Indeed, consider the program presented below. The streams
associated with t1 and t2 are both the same stream of natural numbers. However, the
optimization pass described in the previous section is not able to remove one of them, as
their update expressions are not syntactically equal.

node f(x : int) returns (z : int)
var t1, t2 : int;
let

t1 = 0 fby (t1 + 1);
t2 = 0 fby (t2 + 1);
z = t1 + t2 + x;

tel

Listing 5.4: Node with redundant fbys

To treat this kind of program, we need a more general dataflow minimization pass.
Such a transformation generalizes common sub-expression elimination. One possible
algorithm consists in iteratively refining the most general possible equivalence relation
between variables of the node. It starts with R0, a relation where all variables are
equivalent. Relation Rn+1 is built from Rn in the following way: two variables x and y
are related by Rn+1 iff they are defined by equations that are equal modulo Rn. The
algorithm continues until a fixed point is reached, that is Rn+1 = Rn. At this point,
one equation is introduced for each equivalence class. In the example of listing 5.4,

142

5.3. Generalizing the Stc language

the equivalence classes of R0 would be { t1, t2, z } and those of R1 and R2 would be
{ t1, t2 } and { z }, which means one of the two fby equations can be removed.

This algorithm is implemented in the Heptagon compiler [Dev17], which is written in
OCaml. From what we could gather, the worst-case complexity of this implementation is
O(n2 log n) with n the number of variables in the node. This complexity seems close to
the theoretical limit: in the worst case, we need n iterations before finding the fixed point.
Each iteration needs to sort each of the n variables into a new equivalence class. Finding
which class is the correct one, with an efficient data structure, requires log n comparisons.
Additionally, the OCaml program exploits some imperative features. It is not clear if
a purely functional program would have the same complexity. Because of this, and the
possible intricacy of the proof of semantic preservation for this algorithm, it might be
better to treat this optimization using a translation-validation approach. The fixed-point
algorithm may be implemented in OCaml, with a Coq verified validator checking that
the classes obtained at the end of the algorithm are correct with respect to the program.

5.3 Generalizing the Stc language

The usual compilation scheme for synchronous dataflow languages directly translates
normalized and scheduled dataflow equations to imperative code [Bie+08]. In Vélus, there
is an extra step: the intermediate language Stc, was introduced in [POPL20]. The main
purpose of this language is to improve the effectiveness of equation scheduling before
translation to imperative code. Recall that, in Obc, two adjacent switch statements on
the same condition can be fused. The switch statements in Obc code are generated from
the clocks and control expressions of the dataflow program. In order to maximize the
number of switch fusions, and thereby minimize branching in the generated program, the
scheduler should place equations with the same or similar clocks next to one another.
In early versions of Vélus [PLDI17], scheduling was performed on NLustre equations,
but with the addition of modular reset [POPL20], this became less effective. The extra
complication is that reset operations are compiled into switch statements, whose guard
expressions may differ from the activation clocks of the corresponding equations. To
facilitate the fusion optimization, it is therefore better to schedule reset operations
independently from the equations themselves. This is especially important for programs
with state machines, where the compilation may generate several reset operations with
the same condition, which should be scheduled together if possible. The Stc language,
which we now present, allows independent scheduling of reset operations.

5.3.1 Example and informal semantics

The example of figure 5.21 illustrates the separation of reset and update operations
in Stc. The NLustre node at left is compiled into the Stc transition system at right.
Variable x becomes a state variable in Stc, since it is used with last in the source. Its
last initialization is used to specify the initial value of x in the header of the system.
The body of the system contains transition constraints. Since the last initialization may

143

5. Middle-End Compilation

node f(r1, r2 : bool)
returns (y : int)
var x, z : int;
let

last x = 0 every r1, r2;
x = last x + 1;
z = if r1 then 1 else 2;
y = x * z;

tel

system f {
last x = 0;

transition(r1, r2 : bool)
returns (y : int)
var z : int; {

reset x = 0 every r1;
reset x = 0 every r2;
update x = last x + 1;
z = if r1 then 1 else 2;
y = x * z;

}
}

Figure 5.21: An Stc system compiled from an NLustre node

S0

x = 0
I0

x = 0

S1

x = 1

I1

x = 1

S2

x = 2

I2

x = 0
S3

x = 1

r1 F F T F ‹› F F F T F . . .
r2 F F F F ‹› F T F T F . . .
S(x) 0 1 2 1 2 2 3 1 2 1 . . .
I(x) 0 1 0 1 2 2 0 1 0 1 . . .
last x 0 1 0 1 ‹› 2 0 1 0 1 . . .
x 1 2 1 2 ‹› 3 1 2 1 2 . . .
S′(x) 1 2 1 2 2 3 1 2 1 2 . . .

Figure 5.22: Example execution of the program of figure 5.21

be reset, it generates a reset constraint for each of its reset conditions. The equation
defining x is translated into an update constraint. The equations defining z and y are
translated into simple constraints. The first reset constraint and the constraint defining
z should be scheduled next to each other, since they have the same condition r1.

Figure 5.21 illustrates the behavior of this system, focusing on the state variable x. An
Stc system specifies the initial values and transition relation for its state. The diagram at
left shows the first four states for the example system, for the inputs indicated in the table
at right. In the initial state, S0, the value of x is set to 0, according to its declaration.
The update equation specifies the value of x in the next state S1. The intermediate states
I, shown with dashed rectangles, represent the value of state variables after a reset but
before an update. For state variables manipulated with last, this corresponds to the
last value, if it is present. For instance, I2(x) = 0 because, at the third reaction, r1 is
true, and therefore the value of last x must be reset to 0.

Our formal description of the language focuses on the modifications necessary to
support the features seen in this example, namely generalized resetting and last variables.

144

5.3. Generalizing the Stc language

system ::= system f { init statedecl * ; last statedecl * ; sub subdecl * ; transition }

statedecl ::= x = c

subdecl ::= x : f

transition ::= transition (var+) returns (var+) var var * { tc+ }

tc ::= x =ck ce
| reset x = c every ck
| next x =ck e
| update x =ck ce
| reset f <x> every ck
| x * =ck f <x> (e*)

Figure 5.23: Abstract syntax of Stc

5.3.2 Syntax of Stc

The abstract syntax of Stc is presented in figure 5.23. An Stc program is a list of
(transition) systems. The init and last keywords declare two types of state variables,
with their initialization by a constant value. Intuitively, the formet corresponds to variables
defined by fby equations in NLustre. The latter corresponds to the last variables of
NLustre; in particular, their last value may be accessed in expressions. We detail below
how their semantics differ. The sub keyword declares a list of sub-systems instances, with
the corresponding system names. Then, the transition keyword specifies how the state
is updated. The transition is declared with input, output, and possibly local variables.
Its body is a list of transition constraints.

The simplest transition constraint assigns a value to an output or local variable. The
value is defined by a control expression, using the same language of expressions as in
NLustre. The constraint is annotated by a clock type, which indicates when it is active. A
reset constraint specifies that the value of a state variable x is reset every time a clock ck
evaluates to true. A next (respectively update) constraint specifies how a state variable
declared with init (respectively last) is updated. The clock-type annotations of these
constraints indicate when the state is updated. A sub-system can also be reinitialized by
a reset constraint. The final constraint updates a sub-system using inputs calculated
from expressions, and associates its output values to variables.

5.3.3 Formal semantics of Stc

State and state variables In the semantic model, a state S has the same form as the
instantaneous memory used in the NLustre memory semantics described in section 5.2.1.3.
We focus on the treatment of state variables, as the treatment of sub-system instances is
mostly unchanged from [Bru20, §3.4.2].

145

5. Middle-End Compilation

P(f) = system f { init stdsn ; last stdsl ; sub subds; trans }
∀(x = c) ∈ stdsn , S (x) = c ∀(x = c) ∈ stdsl , S (x) = c

∀(x : f ′) ∈ subds, initial-state P f ′ S [x]

initial-state P f S

Figure 5.24: Initial state of an Stc system Stc/StcSemantics.v:61

State initialization The semantic judgment initial-state P f S specifies that the initial
state of system f in program P is S; the formal rule defining it is presented in figure 5.24.
For every state variable x declared in the system, S(x) contains the corresponding constant.
The initialization of each sub-system yields the corresponding sub-state, accessed by S[x].

Transition constraints Each transition constraint constrains part of the next state
S′, depending on the current state S. These constraints are formalized by the semantic
judgement P,R, b, S, I, S′ ⊢stc tc. In addition to the current and next states, it takes as
parameters the program P for evaluation of sub-systems, an environment R that stores
the values of variables, a base clock b, and an intermediate state I which specifies the
value of state variables after a potential reset but before an update.

The semantics of a stateless constraint x =ck e is specified by the first rule in figure 5.25.
The expression e is evaluated instantaneously under environment R. The resulting
synchronous value sv must be associated with the left-hand variable in R. This is similar
to the rules for equations in the dataflow languages. As in NLustre, the clock type of
the equation is evaluated and must correspond to the presence or absence of sv . This
overspecification simplifies the correctness proof for the translation to Obc.

There are two rules for a constraint reset x = c every ck . The first applies when ck
evaluates to true and associates x with c in I. The rule where ck evaluates to false does
not constrain the value of x in I. This is because a state variable may have several reset
constraints associated with it. This is highlighted by the example presented in figure 5.22,
where x is reset whenever either r1 or r2 is true. With these rules, all active resets
constrain I, and they must not be contradictory. If none of the reset constraints are
active, then the value of I(x) is not specified by the reset rules. Instead, it is specified
by the rules controlling the update of x, which we detail below. This design choice is
practical because, syntactically, there is only one update constraint for x, while there may
be several independent reset constraints.

We now look at the rule which specifies the semantics of next x =ck e when e produces
a present value. The constraint is annotated with a list of clock types ckrs, which
must correspond to the clock types of the reset constraints for x in the system. The
first premise of the rule specifies that, if all the clocks in ckrs evaluate to false, then
I(x) = S(x). This is complementary to the reset rules, and completes the specification
of I(x). The other premises specify the value of x in the subsequent state S′ and in the
environment R. The value associated with x in R is the one in I: when accessing x in

146

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.StcSemantics.html#STCSEMANTICS.initial_state

5.3. Generalizing the Stc language

R, b ⊢inst e
ck ↓ sv R(x) = sv

P ,R, b,S , I ,S ′ ⊢stc x =ck e

R, b ⊢inst ck ↓ T I (x) = c

P ,R, b,S , I ,S ′ ⊢stc reset x = c every ck

R, b ⊢inst ck ↓ F
P ,R, b,S , I ,S ′ ⊢stc reset x = c every ck

(∀ck ∈ ckrs, R, b ⊢inst ck ↓ F) =⇒ I (x) = S (x)

R, b ⊢inst e
ck ↓ ‹v› R(x) = ‹I (x)› S ′(x) = v

P ,R, b,S , I ,S ′ ⊢stc nextckrs x =ck e

(∀ck ∈ ckrs, R, b ⊢inst ck ↓ F) =⇒ I (x) = S (x)

R, b ⊢inst e
ck ↓ ‹› R(x) = ‹› S ′(x) = I (x)

P ,R, b,S , I ,S ′ ⊢stc nextckrs x =ck e

(∀ck ∈ ckrs, R, b ⊢inst ck ↓ F) =⇒ I (x) = S (x)

R, b ⊢inst e
ck ↓ ‹v› R(last x) = ‹I (x)› R(x) = ‹v› S ′(x) = v

P ,R, b,S , I ,S ′ ⊢stc updateckrs x =ck e

(∀ck ∈ ckrs, R, b ⊢inst ck ↓ F) =⇒ I (x) = S (x)

R, b ⊢inst e
ck ↓ ‹› R(last x) = ‹› R(x) = ‹› S ′(x) = I (x)

P ,R, b,S , I ,S ′ ⊢stc updateckrs x =ck e

Figure 5.25: Transition Semantics of Stc Stc/StcSemantics.v:78

expressions of the system, its value is the one after any reset, but before update; this
is similar to the behavior of a resettable fby. The next value of x, stored in S′, is that
produced by expression e.

The second rule for next x =ck e applies if the value produced by e is absent. Its first
premise is the same as that of the previous rule. The rule specifies that the value in S′ is
not updated: it is the same as the value in I.

The next two rules concern update constraints. They both start with the premise
completing the specification of I(x). Then, they generalize the rule for stateless constraints
by specifying the value of last x, which is the same as I(x). If e evaluates to a present
value ‹v›, the value of x in S′ is set to v.

We do not show the semantic rules for sub-system reset and update, as they are almost
identical to the ones presented in [Bru20, Figure 3.6]. The only necessary addition to the
update rule is a premise relating I[x] with S[x] in the case where all reset constraints are
inactive, similarly to the state variable update rules.

147

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.StcSemantics.html#STCSEMANTICS.sem_trconstr

5. Middle-End Compilation

P(f) = system f {[...]; transition ([xi]i) returns ([yj]j) var locs; {tcs}}
∀i , R(xi) = vxi ∀j , R(xj) = vxj P ,R, (ibase-of [vxi]i),S , I ,S ′ ⊢stc tcs

P ,S ,S ′ ⊢stc f ([vxi]i) ↓ [vyj]j

P ,S ,S ′ ⊢stc f (xss(k)) ↓ yss(k) P ,S ′ ⊢stc f (xss)
k+1⟲ yss

P ,S ⊢stc f (xss)
k⟲ yss

Figure 5.26: Stc system semantics Stc/StcSemantics.v:229

Iterated system semantics The instantaneous semantics of a full Stc system are
given in the first rule of figure 5.26. The judgement P, S, S′ ⊢stc f(xs) ↓ ys states that in
a program P , given inputs xs, system f transitions from state S to state S′, producing
outputs ys. The rule defining this judgment is similar to the ones for nodes in Lustre
and NLustre. It supposes the existence of a local environment R in which the inputs
and outputs of the system are given, and an intermediate state I, and ensures that all
transition constraints apply to R, S, I and S′.

The infinite behavior of the system is specified by the judgment P, S ⊢stc f(xss)⟲ yss,
which states that the iterated application of transitions of f starting from state S on
streams xss produce streams yss. This judgment is defined coinductively by the second
rule of figure 5.26. Its definition uses an extra parameter k to specify the index of streams
xss and yss, which is implicitly 0 if not written.

5.3.4 From NLustre to Stc

We have already shown an example of the compilation of NLustre to Stc, initially presented
in [Bru20, Figure 3.3]. Each NLustre equation is compiled into one or several transition
constraints. To support the compilation of last variables and generalized resetting,
we extend the compilation function. The updated function

⌊
eq
⌋
lasts is presented in

figure 5.27. It has a parameter lasts which associates each last variable to the list of its
reset conditions. This association is determined by analysing all the last initialization
equations in a node before applying the compilation function.

Compiling a stateless equation requires an additional case analysis compared to the
previous version. If the equation defines a stateless variable x, then it is compiled to a
stateless constraint. However, if x is declared with last then the equation is compiled
to an update constraint. The lasts table is used both to determine whether or not x is
declared with last and to recover the list of reset clocks used to annotate the update
constraint. The compilation of a last initialization equation generates one state-variable
reset constraint for each reset condition of the equation. Each source reset condition
is expressed as a variable xi annotated with its clock ck i. In the Stc code, this condition
is simply represented as the sampled clock cki on T (xi). As expected, this clock evaluates

148

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.StcSemantics.html#STCSEMANTICS.loop

5.3. Generalizing the Stc language

⌊
x = e

⌋
lasts ≜

{
if x /∈ lasts then x = e
if lasts(x) = ckrs then updateckrs x = e⌊

last x = c every [rck i
i]i

⌋
lasts ≜ [reset x = c every (ri on T (ck i))]

i

⌊
x = reset c fby e every [rck i

i]i
⌋
lasts ≜

next x =[ri on T (ck i)]i e;

[reset x = c every (ri on T (ck i))]
i⌊

xs = (reset f every [rck i
i]i)(es)

⌋
lasts ≜

xs =[ri on T (ck i)]i f<x>(es);
[reset f<x> every (ri on T (ck i))]

i

Figure 5.27: Translation of NLustre equations NLustreToStc/Translation.v:50

to true iff xi is present and evaluates to true.
The changes to the compilation of fby and node instantiations are related to the gen-

eralization of reset. For each type of equation, the function generates the corresponding
update constraint (next and instance update), and one reset constraint for each reset
condition of the equation. These transitions may be scheduled independently, since their
overfall semantics is independent of their syntactic order.

Correctness The proof of semantic correspondence between NLustre and Stc is based on
the NLustre semantics with memory. Having the memory of the NLustre node facilitates
stating and proving the correctness lemma below. If the NLustre node has a semantics
with memory M , then (i) M0 is the initial state for the compiled system, and (ii) iterating
the transition relation of the compiled system with the original inputs xss produces the
same output streams yss.

Lemma 28 (NLustre to Stc translation NLustreToStc/Correctness.v:811)

if G,M ⊢mem f(xss) ⇓ yss then initial-state
⌊
G
⌋
f M0 ∧

⌊
G
⌋
,M0 ⊢stc f(xss)⟲ yss

Proving that M0 is the initial state is direct, and our modifications to the compilation
pass do not add any difficulties compared to the proof described in [Bru20, §3.2.2]. The
proof of the second conclusion requires more work. To establish the iterated semantics
presented in figure 5.26, it exploits a result unstated in the previous lemma: the sequence
of states of the Stc system corresponds exactly to M . In other words, the transition
relation of the system, applied on the nth inputs, relates Mn with Mn+1. This is stated
formally by the lemma below.

Lemma 29 (Instantaneous NLustre to Stc translation NLustreToStc/Correctness.v:731)

if G,M ⊢mem f(xss) ⇓ yss then ∀n,
⌊
G
⌋
,Mn,Mn+1 ⊢stc f(xss(n)) ↓ yss(n)

Recall that the instantaneous semantic rule for systems requires the existence of an
environment R and an intermediate state I. Providing R is easy: it is exactly H(n),

149

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustreToStc.Translation.html#TRANSLATION.translate_eqn
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustreToStc.Correctness.html#CORRECTNESS.correctness_loop
https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustreToStc.Correctness.html#CORRECTNESS.correctness

5. Middle-End Compilation

where H is the history of the source node. Constructing I is more difficult, as it depends
on the stateful equations in the node. The original proof presented in [Bru20, §3.2.2]
proceeded by induction on the list of source equations, building I value-by-value and
proving simultaneously that it respects the generated constraints. This type of local
reasoning was possible because each state variable of the generated system was only
subject to the transition constraints generated from a single equation. This is no longer the
case. Consider the NLustre equations last x = 0 every r; ...; x = last x + 1. The
first generates the constraint reset x = 0 every r; the second generates the constraint
update x = last x + 1. The semantics of both depend on I(x). Since the equations are
compiled separately, reasoning on I must be global.

To simplify the proof, we adopt the following strategy: in a first step, we build I by
induction on the list of equations, along with a strong invariant relating the syntax and
semantics of the node with the values of I. In a second step, we use this invariant to prove
that I respects the generated transition constraints. The part of the first step relevant to
last equations is presented in lemma 30. For any last x = ... in the source equations,
there exists streams associated with x and last x in history H, as well as some streams
associated with the reset conditions of the equation; all of these streams are related by the
mfbyreset operator of definition 8 (page 128). The first five conjuncts correspond exactly
to the definition of the memory semantics of a last initialization equation. Restating
them in the invariant allows us to fulfill the semantic constraints in the second part of
the proof. The last conjunct relates these streams to the values actually stored in I.
Notice that, if we ignore absence and presence, these values correspond to the definition
of fbyreset in definition 9 (page 129). In the second part, we use the correspondence
between mfbyreset and fbyreset from lemma 18 (page 130), to conclude the proof. The
cases of the invariant for fby and node instantiation are similar and not shown here.

Lemma 30 (Building intermediate state NLustreToStc/Correctness.v:413)

if G,H, bs,M ⊢mem eqs

then ∃I,

∀ (last x = c every xrs) ∈ eqs,

∃xs ls ys rs,

H(x) ≈ xs
∧ H(last x) ≈ ls
∧ ∀i,H(xrs i) ≈ ys i
∧ bools-ofs [ys i]i ≈ rs
∧ mfbyresetxc M xs rs ≈ ls

∧ ∀n,
{
if rs(n) = T then In(x) = c

else In(x) = holdresetc xs rs n
∧ ∀ (x = reset c fby e every xrs) ∈ eqs,

...
∧ ∀ (x = (reset f every xrs)(es)) ∈ eqs,

...

150

https://velus.inria.fr/phd-pesin/velusdoc/Velus.NLustreToStc.Correctness.html#CORRECTNESS.build_intermediate_state

5.4. Translation to imperative Obc code

5.4 Translation to imperative Obc code

We now describe the remaining compilation passes which translate transition systems to
imperative code. We first detail the translation from the Stc to Obc syntax, since it is
important for understanding the specifics of the previous and subsequent passes. We then
detail the scheduling of Stc programs, and how the scheduling invariant is used to prove
the correctness of the Stc to Obc translation. Finally, we discuss the fusion optimization
that is applied to the generated Obc. As these passes were already present in earlier
versions of the compiler; we focus on the changes necessary to support the extensions of
Stc (generalized resetting, last variables and updates).

5.4.1 From Stc to Obc

We first describe the translation of an Stc system into an Obc class. The compilation
function for a system, presented in figure 5.28 at top, is broadly unchanged. Both
types of state variables, declared with init and last, are translated into Obc state
variables (state). The sub-systems, declared with sub, are translated into instances of
the corresponding classes (instance). The compilation of a system generates two methods.
The first, reset, reinitializes all state variables and instances, based on the declared
initializations in the Stc system. The second, step, implements the transition relation
specified by the Stc transition. Its body is the sequence of the compiled constraints.

The compilation function for transition constraints
⌊
tc
⌋
sts

, presented in figure 5.29,
takes an extra input sts , specifying the set of state variables of the system. This parameter
is necessary for the function to decide whether to translate an Stc variable as a local or
state variable in Obc. The compilation scheme for transition constraints is presented
first. Recall that each transition constraint is activated on a given clock ck . The
Obc language does not have clocks. The transformation controlsts ck stmt encodes the
conditional activation using switch statements. If ck is the base clock, stmt is activated
unconditionally. Otherwise, if ck is a clock sampled on C(x), a switch on x is produced,
where only branch C contains statement stmt and the other branches do nothing.

The compilation of a stateless constraint produces an assignment to the corresponding
variable. However, since the Obc language does not contain control expressions, the
compilation of the expression at right of the assignment may require generating switch
statements. The compilation function for control expressions,

⌊
e
⌋stmt

sts
therefore takes as

a parameter a partial assignment instruction stmt . This function traverses the control
expressions merge and case, generating a switch for each. When encountering a simple
expression, the assignment is completed, and inserted under the corresponding branch of
the switches. Compiling an update constraint is similar, but generates updates of state
variables, as exemplified by figure 5.3 (page 119). The compilation of next constraints is
simpler: since the expression at right may only be a simple expression, it generates a single
assignment. The compilation of state-variable reset constraints generates assignments of
the initialization constant c to the corresponding state variable. These assignments are
controlled by the condition clock of the reset constraint. Finally, compiling sub-system

151

5. Middle-End Compilation

system f {
init [xn

i : tyn
i = cni]

i

last [x l
i : ty

l
i = clj]

j

sub [x s
k : fk]

k

transition (ins) returns (outs)
var locs {tcs}

}

≜

class f {
[state xn

i : tyn
i]

i

[state xl
j : ty

l
j]
j

[instance xs
k : fk]

k

method reset() returns() {
[state(xn

i) := cni]
i

[state(xl
j) := clj]

j

[_ := fj(xj).reset()]k

}

method step(ins) returns(outs)
var locs {

⌊
tcs

⌋
([xn

i]
i+[xl

j]
j)
}

}

Figure 5.28: Translation of Stc systems StcToObc/Translation.v:176

controlsts • stmt ≜ stmt

controlsts (ck on C(x)) stmt ≜ switch
⌊
x
⌋
sts

{ | C => stmt }⌊
x =ck e

⌋
sts
≜ controlsts ck (

⌊
e
⌋x :=
sts

)⌊
updateck x = e

⌋
sts
≜ controlsts ck (

⌊
e
⌋state(x) :=
sts

)⌊
next x =ck e

⌋
sts
≜ controlsts ck (state(x) :=

⌊
e
⌋
sts

)⌊
reset x = c every ck

⌋
sts
≜ controlsts ck (state(x) := c)⌊

xs =ck f<x>(es)
⌋
sts
≜ controlsts ck (xs := f(x).step(

⌊
es
⌋
sts
))⌊

reset f<x> every ck
⌋
sts
≜ controlsts ck (_ := f(x).reset())⌊

merge x [(Ci => ei)]
i
⌋stmt

sts
≜ switch

⌊
x
⌋
sts

{ [| Ci =>
⌊
ei
⌋stmt

sts
]i }⌊

case e of [(Ci => ei)]
i (_ => ed)

⌋stmt

sts
≜ switch

⌊
e
⌋
sts

{ [| Ci =>
⌊
ei
⌋stmt

sts
]i }⌊

e
⌋stmt

sts
≜ stmt(

⌊
e
⌋
sts

)⌊
c
⌋
sts
≜ c⌊

x
⌋
sts
≜

{
if x ∈ sts then state(x)

else x⌊
last x

⌋
sts
≜ state(x)⌊

⋄ e1
⌋
sts
≜ ⋄

⌊
e1
⌋
sts⌊

e1 ⊕ e2
⌋
sts
≜

⌊
e1
⌋
sts
⊕
⌊
e2
⌋
sts⌊

e when C(x)
⌋
sts
≜

⌊
e
⌋
sts

Figure 5.29: Translation of Stc constraints StcToObc/Translation.v:98

152

https://velus.inria.fr/phd-pesin/velusdoc/Velus.StcToObc.Translation.html#TRANSLATION.translate_system
https://velus.inria.fr/phd-pesin/velusdoc/Velus.StcToObc.Translation.html#TRANSLATION.translate_tc

5.4. Translation to imperative Obc code

updates and resets generates, respectively, calls to the step and reset methods of the
corresponding class.

The compilation of simple expressions has two subtleties. First, a variable x may be
compiled either to an access to a temporary variable x, or to an access to a state variable
state(x), based on whether or not x is declared as a state variable in sts . Second, last x
is simply compiled to state(x). This means that, if x is a state variable, both expressions
x and last x are compiled to state(x). In particular, the constraint x = last x is
compiled into a state(x) := state(x) statement that we may optimize away in Obc.
Intuitively, in the imperative program, both last x and x refer to the same state variable,
or memory cell, but before and after its update. We will see below how this affects the
scheduling of Stc constraints.

5.4.2 Scheduling of Stc Constraints

This compilation scheme is only correct for scheduled Stc systems. In this section, we
define what it means for a system to be well scheduled. We then discuss the algorithm
that schedules an Stc system, its translation-validation, and the special pre-treatment
necessary to schedule some programs.

5.4.2.1 Scheduling rules

To define the scheduling rules for a system, we first define the set of variables read or
defined by a transition. The free variables of a constraint are those free in its expressions
(see figure 5.14, page 135), or clock. The variables defined by a constraint are specified
by the Def function presented in figure 5.30. A variable is either defined by a stateless
equation, the update of a last variable, or the update of a sub-system.

The WellScheduled predicate is presented in figure 5.31. It is defined inductively over
the list of transition constraints tcs. It takes two extra invariant parameters: ins, the
set of inputs of the system, and nexts, the set of state variables declared with init and
updated with next. An empty system is always well scheduled. If the system contains a
list of constraints tcs followed by a single constraint tc, then tcs must be well scheduled,
and the following constraints relate tc and tcs.

The second premise specifies which free variables may be read in tc. To read the
current value of a variable x, it must have been previously written by either (i) being
defined in tcs , (ii) being an input of the transition, and (iii) beeing in the nexts set (that
is, be a state variable updated previously).

The next two premises account for state variable updates. The previous value of a
state variable x can only be read before the x is updated. Specifically, x may not be read
after it is updated with next, and last x may not be read after it is update with update.

The final three premises account for reset constraints. The value of a state variable x
(respectively last x) is read after its possible reset. Therefore, all reset constraints must
be scheduled before reading or updating their state variables, or sub-system instances. In
the inductive definition, this is encoded contrapositively.

153

5. Middle-End Compilation

Def(x = e) ≜ {x}
Def(update x = e) ≜ {x}

Def(next x = e) ≜ ∅
Def(reset x = c every ck) ≜ ∅

Def(xs = f<x>(es)) ≜ xs

Def(reset f<x> every ck) ≜ ∅

Figure 5.30: Variables defined by transition constraints Stc/StcSyntax.v:935

WellScheduled ins nexts ϵ

WellScheduled ins nexts tcs
∀ x ∈ Free(tc), x ∈ Def(tc) ∨ x ∈ ins ∨ x ∈ nexts

∀ x ∈ Free(tc), (next x = _) /∈ tcs ∀ (last x) ∈ Free(tc), (update x = _) /∈ tcs
∀x , tc = (reset x = _ every _) =⇒ x /∈ Free(tcs; tc) ∧ (next x = _) /∈ tcs

∀x , tc = (reset x = _ every _) =⇒ (last x) /∈ Free(tcs; tc) ∧ (update x = _) /∈ tcs
∀x , tc = (reset _<x> every _) =⇒ (_ = _<x>(_)) /∈ tcs

WellScheduled ins nexts (tcs; tc)

Figure 5.31: Scheduling rules for Stc constraints Stc/StcWellDefined.v:43

This definition completely specifies a scheduling of translation constraints that, when
compiled to Obc, yields a correct program. However, systems may have several possible
schedulings, or none. In the next two sections, we present a pre-processing step that make
some non-schedulable systems schedulable, and then describe the scheduling algorithm
used in Vélus, and the heuristics designed to increase its effectiveness with regard to the
Obc fusion optimization.

5.4.2.2 Cutting update cycles

Consider the following Lustre equations, and the corresponding transition constraints.

• x = 0 fby y; y = 0 fby x compiles to next x = y; next y = x

• x = last y; y = last x compiles to update x = last y; update y = last x

• y = x + last x compiles to y = x + last x

None of these definitions contain dependency cycles according to the rules described in
chapter 3. However, none of the generated translation constraints are schedulable. In
the first instance, according to the rule for next state variables, both x and y must be
updated after they are used. However, each is used in the update of the other, which

154

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.StcSyntax.html#STCSYNTAX.Is_defined_in_tc
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.StcWellDefined.html#STCWELLDEFINED.Well_scheduled

5.4. Translation to imperative Obc code

means that next x = y would have to be scheduled before next y = x, and vice-versa.
This is of course impossible. The same reasoning applies in the second instance. The last
instance is a bit different: since the definition of y uses both x and last x, it would have
to be scheduled both before and after x is updated, which is also impossible.

In all of these instances, the issue is that a value stored in a state variable must be
updated while it is still needed. A simple solution is to copy this value into a temporary
variable; that way, it is still accessible after the state variable is updated. Of course,
copying has a run time and memory cost, which we want to minimize.

Algorithm To illustrate the heuristics and algorithm, we use the Stc code produced for
the drive_sequence example, presented in listing 5.5. It is not immediately schedulable,
as updating l$mA depends on last l$mB, and vice-versa. A copy for either last l$mA
or last l$mB should be added. Here, choosing either does not make any difference
performance-wise.

system drive_sequence {
last l$mA = true; l$mB = true;
transition(step : bool) returns (mA, mB : bool) {

update l$mA =
merge step

(false => (last l$mA when not step))
(true => (not last l$mB when step))

mA = l$mA
update l$mB =

merge step
(false => (last l$mB when not step))
(true => (last l$mA when step))

mB = l$mB
}

}

Listing 5.5: Stc code for drive_sequence

In more complex cases, where there are several inter-locking cycles, the pass should
minimize the number of copies introduced. To do so, it builds a graph of the dependencies
between state-variable updates. It then uses an algorithm to calculate the minimal
feedback arc set [ELS93]. Given a directed graph, the algorithm returns a set of arcs such
that the graph without these arcs is acyclic. Finding a minimum set is NP-hard problem:
the algorithm is based on a heuristics and runs in linear time. Since this analysis does not
need to be formally verified, we implement it in OCaml using the OCamlgraph [CFS07]
library which includes an implementation of the algorithm contributed by Timothy Bourke.

Before we describe the OCaml analysis and the Coq transformation, we show the
interface between them in listing 5.7. The axiomatized function cutting_points takes as
inputs the list of last and next state variables and the list of constraints in the system,
and returns a list of state variables for which a copy must be introduced before the update.

155

5. Middle-End Compilation

system drive_sequence {
last l$mA = true; l$mB = true;
transition(step : bool) returns (mA, mB : bool)
var stclmB : bool; {

stclmB = last l$mB
update l$mA =

merge step
(false => (last l$mA when not step))
(true => (not stclmB when step))

mA = l$mA
update l$mB =

merge step
(false => (last l$mB when not step))
(true => (last l$mA when step))

mB = l$mB
}

}

Listing 5.6: drive_sequence node after cutting update cycles

Parameter cutting_points : list ident -> list ident -> list Syn.trconstr -> list ident.

Listing 5.7: Interface with OCaml analysis Stc/CutCycles/CC.v:26

OCaml analysis The function is implemented in OCaml. It builds the graph of update
dependencies according to the rules specified in figure 5.32. For each constraint tc, the
function collects the sets of state variables that must be updated before (Befnxt(tc)) or
after (Aftnxt(tc)) the constraint is applied. Both of these functions are defined recursively
over the syntax of constraints and expressions; we only show the base cases for variables
and last variables. The functions are parameterized by the set of next state variables nxt .
A state variable that is updated with update (not in nxt) must necessarily be updated
before it is read. Conversely, a state variable updated by next may only be updated after
it is read. On the other hand, last variables may only be read before they are updated.

The sets returned by these functions are used to compute the edges of the graph. We
write x→ y to indicate that x must be updated before y. Copying the previous value of
y into a buffer removes this scheduling constraint, but it is only possible if y is a state
variable. Therefore, in the case of constraints defining a variable, we introduce a stronger
arc x⇒ y which may not be cut by the feedback arc set algorithm.

The graph built following this rules is then passed to the Fashwo.feedback_arc_set
function of OCamlgraph [CFS07], which returns the list of edges to cut; the cutting_points
function simply returns the destination vertices of these edges.

Coq transformation and correctness For each variable x in the list of cutting points,
the Coq transformation function introduces a copy constraint. We focus on the case where

156

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.CutCycles.CC.html#EXT_CC.cutting_points

5.4. Translation to imperative Obc code

Befnxt(x) ≜

{
if x ∈ nxt then ∅

else {x}
Befnxt(last x) ≜ ∅

Aftnxt(x) ≜

{
if x ∈ nxt then {x}

else ∅
Aftnxt(last x) ≜ {x}

constraint y ∈ Befnxt(tc) y ∈ Aftnxt(tc)
update x = e, next x = e, reset x = _ every ck y → x x→ y
x = e, xs = f<i>(es) y ⇒ x x→ y

Figure 5.32: Graph Analysis for cutting state-variable update cycles

x is declared with last, the case for next being similar. A constraint stc$x = last x
is added, and last x is replaced by stc$x in the rest of the body. This transformation
is illustrated in listing 5.6, where we show the drive_sequence system after cutting the
update cycle between l$mB and l$mA. Here, the FASH algorithm has indicated that
l$mB should be copied. This leads to adding an stclmB = last l$mB constraint, and
renaming in last l$mB into stc$l$mB in the transition constraint for l$mA.

The function does not rename last l$mB in the constraint for l$mB; if it did, we would
loose the syntactic relation that allows us to remove the state(l$mB) := state(l$mB)
statement in the generated Obc code. In the Coq implementation, this is handled by an
extra case that prevents renaming last x in a constraint that updates x. This extra case
can never prevent the removal of a cycle, because updating a state variable x may always
depend on the previous value of x.

The Coq implementation is relatively simple. To generate fresh identifiers for the new
copies, it reuses the Fresh monad described in the previous chapter. To handle renaming,
the semantic preservation proof reuses the notion of refinement of environment modulo
substitution.

Possible improvement The transformation we outlined is still sub-optimal. In the
example of listing 5.6, stclmB is declared on the base clock. This means that in the
generated Obc code, the copy will be calculated in every cycle, while it is only necessary
when c = true. To avoid unnecessary copies on cycles where c = false, a sampled vari-
able could be introduced instead: adding constraint stclmB = last l$mB when c, and
replacing the corresponding expression in the constraint updating l$mA. While this is
straightforward in this specific example, more general case may have arbitrary combina-
tions of sampling with other operators, which complicates not only the transformation
and its verification, but also the interaction between the Coq program and the OCaml
analysis.

To avoid mixing the complexities of this optimization with the transformation, we
could also isolate it in a separate pass. A program analysis could infer, for each local
variable x, the fastest clock ck on which it is used, and thereby downsample x to clock ck .
This would cover the case explained above and possibly optimize some source programs.
Vélus does not yet implement this optimization.

157

5. Middle-End Compilation

5.4.2.3 Scheduling algorithm

OCaml implementation Like the graph analysis used to cut cycles between state
variables, the scheduling algorithm is implemented in OCaml and afterward validated
by a Coq decision procedure. The interface between Coq and OCaml consists in the
schedule function presented in listing 5.8. It takes as input the name of the system (for
printing error messages) and the list of the constraints in the system, and returns a list of
positive integers indicating the position of each constraint in the scheduled system.

Parameter schedule : ident -> list trconstr -> list positive.

Listing 5.8: Interface between Coq and OCaml scheduling Stc/StcSchedule.v:52

The underlying OCaml algorithm proceeds by building a graph of dependencies between
transition constraints. Each vertex of the graph corresponds to a transition constraint and
is annotated with its activation clock. Each edge corresponds to a dependency between
constraints. This includes the dependencies between state variable updates that we
highlighted in the previous section, as well as dataflow dependencies. A topological sort
algorithm then chooses a scheduling from the graph. The heuristics used in the algorithm
try to keep constraints with the same or similar clock types together, in order to improve
the efficiency of the fusion optimization. We did not need to modify this algorithm in our
work; the only necessary changes to support the new constructions were adding cases to
the function that builds the dependency graph.

Coq implementation and semantic preservation The list of positions returned
by schedule is used in the Coq code to sort the transition constraints. The body of the
resulting system is thus a permutation of the source translation constraints. Since the
semantics of Stc systems does not depend on the order of translation constraints in the
system, the proof of semantic preservation is trivial.

Scheduling validator Finally, we must establish that the scheduled program respects
the WellScheduled predicate. We cannot reason directly on the OCaml program. Instead,
we use verified translation validation by implementing a function well_sch that takes the
list of inputs, next variables and constraints of the scheduled program, and returns true
iff the constraints are indeed well scheduled. This function is shown to be equivalent to
the WellDefined predicate.

Lemma 31 (Correctness and completness of well_sch Stc/StcSchedulingValidator.v:322)

well_sch ins nexts tcs = true iff WellScheduled ins nexts tcs

Overall, the definition of well_sch and the proof of its specification have the same
structure as in previous work. The function is defined recursively on the list of constraints,
with accumulators that track the sets of used, defined and updated variables in the

158

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.StcSchedule.html#EXT_STCSCHEDULER.schedule
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.StcSchedulingValidator.html#STCSCHEDULINGVALIDATOR.well_sch_spec

5.4. Translation to imperative Obc code

class f {
state x : int32;

method step(r1, r2 : bool)
returns (y : int) {

switch r1 {
| false => z := 2
| true => state(x) := 0;

z := 1
};
switch r2 {
| false => skip
| true => state(x) := 0
};
state(x) := state(x) + 1;
y := state(x) + z

}
}

ve = {r1 7→ F; r2 7→ T} me = {x 7→ 3 = S(x)}

ve = {r1 7→ F; r2 7→ T; z 7→ 2} me = {x 7→ 3 = S(x)}

ve = {r1 7→ F; r2 7→ T; z 7→ 2} me = {x 7→ 0 = I(x)}
ve = {r1 7→ F; r2 7→ T; z 7→ 2} me = {x 7→ 1 = S′(x)}

Figure 5.33: Relating Stc and Obc semantics

constraints already traversed, and checks that the rules of WellDefined are fullfilled for
the last constraint in the list. The specification of lemma 31 is shown by induction on the
list, and case analysis on this definition. We simply extended the definition and proof
with additional accumulators and checks for the new cases.

5.4.3 Stc to Obc Correctness proof

The semantic preservation proofs for the compilation of Stc to Obc relate the constraint-
based semantics of Stc with the imperative, big-step semantics of Obc. The proof has
been discussed in detail in [Bru20, §1.4.3]. Rather than describe formally the whole proof,
we outline the core ideas behind it using a specific example. We focus on the relation
between the state of the Stc program and the memory of the Obc class, which is the
component the most affected by our changes to the Stc language.

An Obc execution example Recall the example of figure 5.22, which contains a state
variable manipulated with last, update, and two reset constraints. To illustrate the
relation between Stc and Obc behavior, we focus specifically on the 7th transition step of
the execution shown in figure 5.22. At this step, we have r1 = F, r2 = T, and S(x) = 3.
By applying the semantic rules for each transition constraint, we deduce that I(x) = 0
since the second reset constraint is active, and therefore that R(last x) = 0, and finally
S′(x) = R(x) = 1.

That program, once scheduled, compiles to the Obc class shown in figure 5.33 at left
(the reset method is omitted for concision). We now show how the transition system
semantics acts as a specification for the memory updates in Obc. The contents of the

159

5. Middle-End Compilation

environment ve and memory me after each statement are indicated at right. Initially, the
environment only contains the values of inputs and the memory contains the previous
value of x. We assume it is 3, so that at the start of the execution we have me(x) =
S(x). Since r1 = F, the first switch statement does not modify the value of state(x).
The second switch statement executes the state(x) := 0 statement. According to the
semantics of state-variable assignments, the value of x in me is set to 0. The next
statement updates the value of x in me to be 1. Finally, the last statement associates y
to 3 in the environment.

At the end of the execution, the Obc environment corresponds to the Stc environment,
and the memory corresponds to the next state S′. This means that the execution of the
Obc step method correctly simulates the transition of the Stc system. This is stated
formally on the next page, where ∼∼∼ is an equivalence relation between Stc states and Obc
memories.

Lemma 32 (Stc to Obc correctness StcToObc/Correctness.v:1651)

if P, S, S′ ⊢stc f(xs) ↓ ys and me ∼∼∼ S

then ∃me ′,
⌊
P
⌋
,me ⊢obc f.step(xs) ↓ (me ′, ys) ∧ me ′ ∼∼∼ S′

While this lemma specifies the expected memory at the start and end of the execution,
it does not say anything about the memory throughout the execution. In particular, it
does not specify its relation with I, the intermediate state that contains values after reset
and before update. In the example, we have I(x) = 0, which matches the content of me
after the second switch statement, that is, after the reset has occurred.

Proof by induction and memory invariant We now outline the proof of lemma 32.
It proceeds by induction on the list of transition constraints tcs of the source Stc system.
However, the reasoning needs to be global. Indeed, we have seen in the previous example
that the values in Obc memory me evolve at every step, while the values in the Stc states
S, I, and S′ are fixed. To bridge this gap, we express a correspondance invariant between
Obc memory and Stc states. We write this invariant MemoryCorresR b tcs S I S′ me, and
present it on the next page. It relates the content of me with that of S, I and S′ after
the execution of the statements compiled from a given list of constraints tcs. It is also
parameterized by the environment R and base clock b that give a semantics to these
constraints.

160

https://velus.inria.fr/phd-pesin/velusdoc/Velus.StcToObc.Correctness.html#CORRECTNESS.correctness

5.4. Translation to imperative Obc code

Invariant 10 (Memory correspondance invariant Stc/StcMemoryCorres.v:53)

MemoryCorres R b tcs S I S′ me

iff ∀x,

if (update x = _) /∈ tcs
and ∀ck , (reset x = _ every ck) ∈ tcs =⇒ R, b ⊢ ck ↓ F
then me(s) = S(x)

and if (update x = _) /∈ tcs
and ∃ck , (reset x = _ every ck) ∈ tcs ∧R, b ⊢ ck ↓ T
then me(s) = I(x)

and if (update x = _) ∈ tcs
then me(x) = S′(x)

and ∀x, ...
and ∀s, ...

The invariant comprises three conjuncts. The first, on which we focus, concerns the
values associated with last state variables. The other two concern the values associated
with next state variables and sub systems. We do not show them since they are structured
similarly to the first. For each state variable x, there are three possible cases; in each
case, the value of me(x) is related to one of the three states S, I or S′.

1. If tcs does not contain the update constraint for x, and all the reset constraints
for x in tcs are inactive (their clocks evaluate to F), then, in the imperative code,
x has not yet been reset or updated, and therefore me(x) = S(x). In the example,
this is the case before the second switch statement.

2. If tcs does not contain the update constraint for x, but there exists an active
reset constraint for x in tcs, then, in the imperative code, x has been reset, and
therefore me(x) = I(x). In the example, this is the case just after the second switch
statement.

3. If tcs does contain the update constraint for x, then, in the imperative code, x has
been updated, and therefore me(x) = S′(x). In the example, this is the case after
the state(x) := state(x) + 1 instruction.

We now show how this invariant enables the proof of semantic correctness for
this pass. Suppose that the constraints of the system are tcs1;tc2;tcs3. Compil-
ing them produces statements stmts1;stmt2;stmts3. If we have already established⌊
P
⌋
,me, ve ⊢obc stmts1 ↓ me1, ve1, where me and ve are the initial memory and environ-

ment, we need to prove
⌊
P
⌋
,me1, ve1 ⊢obc stmt2;stmts3 ↓ me ′, ve ′. This requires the exis-

tence of memory me2 and environment ve2 such that
⌊
P
⌋
,me1, ve1 ⊢obc stmt2 ↓ me2, ve2

and
⌊
P
⌋
,me2, ve2 ⊢obc stmts3 ↓ me ′, ve ′.

Consider the first requirement. Suppose that the transition being compiled, tc2,
accesses the value of last x. This access is compiled into the Obc expression state(x).
To show that the Obc expression produces the same value as the Stc source expression,
we need to show that me1(x) is equal to R(last x). From the semantics of the update

161

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Stc.StcMemoryCorres.html#STCMEMORYCORRES.Memory_Corres

5. Middle-End Compilation

constraint for x in the source program, we already know that R(last x) is equal to I(x).
All we need to show is that me1(x) = I(x).

This is possible if we know that MemoryCorresRb tcs1S I S′me1. Indeed, since last x
is read by tc2, we know, by the scheduling rules, that (i) there cannot be an update
constraint in tcs1, and (ii) all potential reset constraints are in tcs1. The first point
means that we are in case (1) or (2) of the invariant. If we are in case (2), we have
me1(x) = I(x) trivially. If we are in case (1), we know that all the reset constraints are
in tcs1, and we know that all their clocks evaluate to false. Since we know (syntactically)
that one update constraint for x must exist in the system, we can use the first premise of
the semantic rule for update which states that, if all reset constraints are inactive, then
I(x) = S(x). From this we can conclude that me1(x) = S(x) = I(x), which finally allows
us to associate the correct value to state(x).

To apply the inductive hypothesis and complete the inductive step, we must also prove
that the MemoryCorres invariant is preserved for the updated memory me2 under the new
list of previous constraints, which includes tc2: MemoryCorres R b (tcs1;tc2) S I S′ me2.
This is not trivial if tc2 is a reset or update constraint, in which cases me2 may be
different from me1, and each relevant case of the invariant must be shown to be preserved.

5.4.4 Changes to the Fusion Optimization in Obc

The Obc generated from Stc has too many conditionals: one for each constraint that
is not on the base clock. This simplifies the proof of semantic preservation, but such
naive code is not efficient and must be optimized by fusing adjacent switch statements
when their conditions are syntactically equal. In general, fusing switch statements does
not preserve the program semantics, since an earlier statement may modify a variable
or state variabled tested by a later one. The previous version of Vélus defined a Fusible
predicate [Bru20, Figure 4.6] formalizing the above condition. Any program translated
from a well-scheduled Stc system was Fusible.

The example presented in figure 5.34 shows that this predicate no longer holds under
our modified compilation scheme. In the Stc program (at left), the y is updated depending
on its last value, and the value of z depends on the value of y. In the Obc program,
this induces two switches, both on condition state(y). Although these conditions are
syntactically equal, their values differ, and the switches must not be fused.

Refining the fusion optimization The central case for the function that fuses
switches is presented in figure 5.35. Compared to the earlier definition in [Bru20,
Definition 4.5.1], we have generalized the function to switch on enumerated types, and
changed the presentation somewhat, but the definition is essentially the same: when
encountering two adjacent switches with the same condition, they are fused to produce
one switch, and the statements in each branch are recursively fused. This definition is
pleasantly simple, but, as we have seen in the above example, it may incorrectly translate
Obc programs generated from Stc systems. To fix this issue, there are two possible
solutions. First, the function could analyse the branches of the first switch to check that

162

5.4. Translation to imperative Obc code

system f {
init y = true;
transition(x:int) returns (z:int) {

update y = case last y of
(false => true)
(true => false)

z = case y of
(false => 0)
(true => x)

}
}

class f {
state y : bool;

method step(x:int) returns (z:int) {
switch state(y) {

| false => state(y) := true
| true => state(y) := false

};
switch state(y) {

| false => z := 0
| true => z := x

}
}

}

Figure 5.34: Non-fusible program

⌊
switch e { [| Ci => s1,i]i };switch e { [| Ci => s2,i] }

⌋
≜

switch e { [| Ci =>
⌊
s1,i;s2,i

⌋
]i }

Figure 5.35: Performing the fusion Obc/Fusion.v:44

none of them update a variable used in e; if they do, the fuse would not happen. This
would prevent the issue raised in the previous example, but incur a compile-time cost
and complicate the definition of the transformation.

The intuition for a better solution can be found by examining the example of figure 5.34.
Notice that the condition for the first switch is generated from expression last y, while
that of the second is generated from expression y: at the Stc level, it is possible to
syntactically differentiate the values of y before and after its update. The solution is
to import this distinction into the syntax of Obc, by adding an optional annotation to
the reading of state variables. In other words, we compile last y into statelast(y) and
y into statecur(y), where the annotation indicates whether the value of y is read before
or after its update. This annotation is not interpreted in the Obc semantics. However,
the equality test on expressions does take the annotations into account which suffices to
prevent fusing the two switches from the above example, while still allowing fusion of
two switches that both appear either before or after the update.

New Fusible invariant We now discuss the proof of correctness for the new imple-
mentation of the optimization. As in previous work, the proof depends on the Fusible
invariant, which characterizes programs that may be fused safely. This invariant should
hold for any Obc class compiled from a well-formed Stc system. It essentially transfers
some of the information from the Stc scheduling invariant to the Obc syntax. With our

163

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Obc.Fusion.html#FUSION.zip

5. Middle-End Compilation

Fusible (x := e) Fusible (state (x) := e) Fusible ([xi]i := f (x).mx (es))

Fusible s1 Fusible s2 ∀x , xupd ∈ CanWrite(s1) =⇒ xlast /∈ Free(s2)
Fusible (s1; s2)

∀i , Fusible si ∀x , xcur ∈ Free(e) =⇒ ∀i , x_ /∈ CanWrite(si)
∀x , xlast ∈ Free(e) =⇒ ∀i , xres /∈ CanWrite(si)

Fusible (switch e{ [| Ci => si]i })

Free(x) ≜ {xcur}
Free(statelast(x)) ≜ {xlast}
Free(statecur(x)) ≜ {xcur}

CanWrite(x := e) ≜ {xupd}
CanWrite(state(x) :=res e) ≜ {xres}
CanWrite(state(x) :=upd e) ≜ {xupd}

Figure 5.36: Fusible invariant Obc/Fusion.v:505

modifications to the Obc syntax and the Stc-to-Obc compilation pass, we modified the
invariant greatly. We now motivate its new definition, presented in figure 5.36. The
invariant is defined inductively over the syntax of Obc statements. The base statements
(assignment, state assignment, method call) are all trivially fusible. The more interesting
cases are those for sequence and switch statements.

First, the rule for a sequence s1;s2 specifies that both s1 and s2 are themselves fusible.
Then, it specifies a relation between the variables written in s1 and those read in s2.
Function Free(s) specifies the set of variables read in a statement s, annotated with
either cur or last, indicating whether the value read is that of x or last x. It is defined
recursively over the syntax of statements and expressions; the base cases are presented at
the bottom left of figure 5.36. Only the current value of a local variable may be read. In
the case of a state variable, the function is guided by the syntactic annotations. Function
CanWrite(s) characterizes the set of variables that can be written by statement s. The rule
for a sequence specifies that the variables whose last value is read in s2 canot be written
by s1. At first glance, this rule seems to correspond to the scheduling invariant, but it is
actually too strong. Indeed, recall that Stc reset constraints are compiled to assignments,
and must be scheduled before any read of last. Clearly, we must treat the compiled
reset and update constraints differently in the invariant; to do so, we add annotations res
and upd to the assign statements compiled from these two types of constraints. Function
CanWrite(s) also adds these annotations to the variable written by s. The premise for
fusibility of a sequence s1;s2 then becomes “if x is updated in s1, then it must not be
read as last in s2”.

The rule for switch statements is, unsurprisingly, the most involved. First, it specifies
that the statements of all branches are themselves Fusible. Then, it relates the variables
read in the expression with the ones written by each branch. The first premise specifies

164

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Obc.Fusion.html#FUSION.Fusible

5.4. Translation to imperative Obc code

that the current value of x cannot be read if x is updated or reset in the branches (we
write x_ to signify that the annotation may be either upd or res). The second specifies
that the last value of x cannot be read if x is reset by the branches.

Fusibility of programs translated from Stc The Fusible invariant is respected for
the translation of well-scheduled Stc programs. This is stated formally below: if a list of
constraints tcs is WellScheduled, then its translation to Obc is Fusible.

Lemma 33 (Fusibility of translated Stc constraints StcToObc/Stc2ObcInvariants.v:293)

if WellScheduled ins nexts tcs then Fusible
⌊
tcs

⌋
sts

The proof of this lemma proceeds by induction on the list of constraints and inversion
of the scheduling hypothesis. There are two non-trivial obligations in the proof. The first
is encountered when compiling a non-empty list of constraints tcs1;tc2, which produces
a sequence of Obc statements

⌊
tcs1

⌋
sts
;
⌊
tc2

⌋
sts

. To prove that this sequence if Fusible,
we must prove that the variables updated in tcs1 are not read with last in tc2. This is
a direct consequence of the third premise of WellScheduled (cf. figure 5.31). The other
concerns the compilation of a constraint tc that produces a switch statement, either
because of its clock (with control), or when compiling a merge or case. In all of these cases,
we must prove that the variables read in the condition of the switch are not updated by
the generated statement. This is always true, by the scheduling hypothesis: a variable x
defined with last may only be read after it is reset and updated; in particular, if x is
reset or updated by tc, then it cannot be read by tc or its clock; therefore, it cannot be
read by the Obc statement generated from tc. Similarly, last x may not be read before
x is reset; in particular, if x is reset by tc, then it cannot be read by tc or its clock.

This informal reasoning is relatively easy to mechanize in Coq. Lemma 33 is proven
with the help of a few additional syntactic invariants of Stc systems.

Correctness of fusion Having proven that the Fusible invariant holds for Obc programs
compiled from Stc, we now show that it suffices to prove the semantic correctness of the
fusion optimization. The main correctness lemma is presented below. It states that, if
the source statement is Fusible, then the compiled statement has the same semantics has
the source.

Lemma 34 (Correctness of fusion Obc/Fusion.v:895)

if Fusible s and P,me, ve ⊢obc s ↓ me ′, ve ′ then P,me, ve ⊢obc
⌊
s
⌋
↓ me ′, ve ′

The non-trivial case of the proof is the one that actually fuses two switches, following
the transformation presented in figure 5.35. The semantic hypothesis for this case is

P,me, ve ⊢obc switch e { [| Ci => s1,i]i };switch e { [| Ci => s2,i] } ↓ me ′, ve ′

Inverting it reveals an intermediate memory ve1 and environment me1 that have been
updated by one of the branches of the first switch, but not by the second. In both the

165

https://velus.inria.fr/phd-pesin/velusdoc/Velus.StcToObc.Stc2ObcInvariants.html#STC2OBCINVARIANTS.translate_tcs_Fusible
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Obc.Fusion.html#FUSION.fuse'_Comp

5. Middle-End Compilation

source and compiled statement, the statements contained in the branches of the second
switch are executed in the context me1, ve1. Therefore, to prove that the fused switch
has the same semantics, it suffices to prove that, in the source program, both evaluations
of condition e produce the same value. Since the evaluation of expressions is deterministic,
this amounts to proving that e has the same semantics under contexts me1, ve1 and
me, ve. This is true if none of the variables read in e are updated in memory by the first
switch, which we can prove using the Fusible invariant. There are two possible cases:

• if x is read as last in e, then, by inversion of the Fusible rule for switch, it cannot
be updated as res in the first switch. Additionally, by inversion of the rule for
sequences, this means it cannot be updated as upd either.

• if x is read as cur in e, then, by inversion of the rule for switch, it cannot be updated
as res or upd in the first switch.

5.5 Discussion and Related Work

5.5.1 Compilation to CompCert Clight and Beyond

The ultimate target of Vélus is Clight, the input language of the CompCert verified C
compiler [Ler09a]. We did not need to modify the existing pass that generates Clight from
Obc [PLDI17]. The Clight program is compiled by CompCert into assembly language by
a verified compilation chain. It goes through several intermediate languages, each with its
own semantic model. They can be divided broadly into three categories. First, subsets
of C with simplified control. The semantics of early languages is given with a relational
big-step model and later languages are specified by small-step semantics. Second, Control
Flow Graph (CFG) languages which are defined as graphs where nodes are instructions.
A node may have several successors (conditional branching), and predecessors. The first
of these languages, RTL, uses pseudo registers. RTL programs are compiled into LTL
which uses machine registers allocated by the register allocation pass. Last, the CFG
representation is linearized into a textual, linear representation of the assembly code.

Most of the optimizations implemented in CompCert occur around the RTL language:
function inlining, constant propagation, common subexpression elimination, dead code
elimination, optimizations related to register allocation, etc. The optimizations imple-
mented in Vélus may be redundant with those of CompCert for some programs, but in
other cases, the simplicity and strong static invariants of the dataflow language allows
NLustre-level optimizations to be more aggressive than those defined at the CFG level.

Some of the passes of CompCert use verified translation-validation. In particular,
register allocation is implemented using a graph-coloring algorithm implemented in OCaml.
The non-verified pass takes as input an RTL program and returns a compiled LTL program
where the machine registers have been allocated. A verified validator then checks that
the two are equivalent. This is more complex than the approach we use for scheduling,
where the scheduler simply returns the list of transition numbers; this makes sense, since

166

5.5. Discussion and Related Work

the CompCert pass translates to a new intermediate language with a completely different
AST.

5.5.2 Verified Compilation in CakeML

The back-end of CakeML [Tan+19] translates a subset of SML into machine code. Like
CompCert and Vélus, it includes several intermediate languages, each with their own
semantics, specified in a functional big-step style. Most of the compilation passes of
CakeML are proven directly with respect to the big-step functional semantics of these
intermediate languages. Some passes, such as one implementation of the register allocation,
use translation validation.

The abstract values used in the source semantics of CakeML may be immediate
numbers, allocated blocks or closures. Later, closures are represented by allocated blocks.
One of the most delicate passes of CakeML is the one that transforms these abstract
values into their concrete, machine representation. Vélus avoids this difficulty because it is
more restricted than CakeML, and therefore does not need allocated blocks, and because
the scalar values of Vélus are those of the host compiler, CompCert. Only enumerated
values require a special treatment in the pass that compiles Obc into Clight code.

5.5.3 Translation Validation of Dataflow Programs

In [Aug13], the author describes the verified scheduling of a dataflow language. As in
Vélus, scheduling is based on translation validation, where the validator checks that the
returned set of equations is a permutation of the source. Notably, the validator does not
check that the equations are correctly scheduled; this check is done by the following pass,
which generates imperative Obc code. To do this, and to facilitate the proof of correctness
for this pass, the validator manipulates the sets of defined and used variables explicitly.

The dissertation also describes some imperative optimizations, and sketches possible
correctness proofs. In particular, it discusses the fusion optimization. Since scheduling
is defined on NLustre equations directly, which means resets of nodes may not be
scheduled separately from updates; this might lead to the generation of imperative code
where conditionals cannot be fused optimally. The author proposes several solutions to
improve this situation. First, he suggests that the order of Obc statements may still be
changed to try to bring similar switches close together. This transformation preserves
semantics as long as dependencies between instructions are respected; however, we are not
convinced that the correctness proof would be straightforward, as this means changing
the intermediate memories and environments. Another suggested transformation is to
add switch statements to previously uncontrolled statements. For example, the statement
y = 1 could become switch x { | True => y = 1 | False => y = 1 }. If the statement
appears in between two switch statements on condition x, then this transformation allows
for fusion of the three. We believe that this transformation would be easy to verify using
our Obc semantics.

167

Chapter 6

Conclusion

In this dissertation, we presented an extension of the Vélus language with control blocks
including hierarchical state machines. We introduced a novel semantics for these con-
structions. We showed the proof techniques used to establish fundamental properties of
the semantics. Finally, we proposed some adaptations to the well-established compilation
scheme for these constructions, and showed how the Vélus semantic model facilitates the
correctness proof of each compilation pass.

The compilation passes are chained with the compilation function that generates
Clight from an Obc program, and finally with the compilation function from Clight to
assembly provided by CompCert. This results in a compile (Velus.v:147) function that
transforms an untyped Vélus AST into an assembly program. Theorem 1 shows that, for
each elaborated Vélus program G for which a semantics exists compiled into assembly
code P , the iterated semantics of P simulates the dataflow semantics of G. The theorem
is shown by composing the proofs of semantic preservation for each transformation pass,
along with the proof of correctness for the CompCert compiler [Ler09a].

6.1 Experimental Evaluation

The Coq compile function is extracted to an OCaml program, and compiled to an
executable compiler for Vélus. Theorem 1 assures that the code generated by this
compiler is correct, but does not say anything about its efficiency. For safety-critical
embedded software, we are interested in minimizing the required memory and estimated
Worst Case Execution Time (WCET). The efficiency of the generated code, with regards
to these metrics, depends on the compilation scheme, the optimizations, and the back-end
compiler. Like the Scade KCG [CPP17, Figure 4] and the academic Heptagon [Gér+12,
§6] compilers, Vélus implements clock-directed modular code generation [Bie+08] extended
with source-to-source transformations in the front-end. We have implemented this scheme
without compromising to simplify its formalization and proof. In addition, Vélus provides
some optimizations that exploit properties of the source or intermediate languages; other
optimizations that rely on machine-level details are provided by CompCert.

169

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Velus.html#compile

6. Conclusion

Memory Usage The compilation scheme guarantees compile-time bounds on the
memory required by the generated code: recursion is not permitted, which bounds the
stack size, and a heap is not used. Therefore, the main focus should be the stack size
and the size of the states which are statically allocated. The former mostly depends on
the number of local variables, which will typically be optimized during register allocation
in the back-end. To minimize the latter, a front-end should concentrate on the state
variables, since a back-end cannot normally optimize them. The fby-minimization pass
presented in section 5.2.3.3 reduces the number of fby equations in the NLustre program,
and therefore the number of state variables in the compiled program.

Another optimization that could reduce the amount of memory used by state variables
is related to state machines. Suppose an automaton with only then transitions. In
this automaton, states are always reset on entry. Since the values of state variables
are always “forgotten” by transitions, the state variables of the different states could
be allocated in overlapping blocks of memory, for example by using a union in Clight.
We do not implement this optimization, and believe that it would require significant
changes to the whole Vélus development. Some exclusivity annotations would need to
be added to each intermediate language to inform the generation of Clight code. A
mutual-exclusion invariant that ensures the correctness of these annotations would then
need to be expressed on the source language, where it is obvious from the structure,
and carried through intermediate passes, where the structure is obscured. Finally, this
invariant would justify the correctness of the generation of Clight code.

Worst Case Execution Time The WCET of a function is an estimation of the
worst-case number of CPU cycles necessary to execute it. In the context of synchronous
dataflow programs, we measure the WCET of the step function generated for the main
node of a program. Unfortunately, there is no established set of benchmarks for the Lustre
language. Instead, we use our own programs and programs from the literature as our
benchmark. We estimated the WCET using OTAWA v2.3.0 [Bal+10]. Table 6.1 presents
the WCET of the assembly program generated by Vélus and CompCert, compared to
that of the program generated by Heptagon with either CompCert or GCC. The first
column displays the WCET of the programs generated by Vélus with all optimizations
active. To evaluate the effect of these optimizations, we also estimated the WCET of
each program when disabling some of them. These intermediate results are not included
in the table to keep it simple.

As we hypothesized, disabling the fusion optimization has the most impact on perfor-
mances, incurring a +63% increase of the overall WCET for these benchmarks. Indeed,
these particular programs make heavy use of block-based constructs which induce branch-
ing in the generated code. We also tried replacing the scheduling heuristics described
in section 5.4.2.3 with a simpler algorithm that returns a valid scheduling of Stc con-
straints, without trying to maximize the effectiveness of fusion. Surprisingly, this only
incurs a +8% WCET increase overall. There are two explanations for this relatively small
performance loss. First, the scheduling algorithm is a heuristic and does not necessarily
find the best possible schedule, which is an NP-hard problem. In some cases, it might

170

6.2. Proof Engineering and Practical Concerns

Vélus Hept+CC Hept+gcc Hept+gcci
buttons [CPP17] 1005 1430 (42%) 625 (−37%) 625 (−37%)

chrono [CPP05] 500 970 (94%) 570 (14%) 570 (14%)

cruisecontrol [Pou06] 1385 1680 (21%) 880 (−36%) 830 (−40%)

heater [Pou06] 2415 3110 (28%) 725 (−69%) 500 (−79%)

stepper motor 930 1185 (27%) 605 (−34%) 520 (−44%)

stopwatch [CPP17] 1255 1970 (56%) 1280 (1%) 1280 (1%)

Table 6.1: Estimated WCET in cycles by OTAWA 2.3.0 [Bal+10] for armv7-a using
CompCert 3.11 (CC) and GCC 12.2.1 at -O1 without inlining (gcc) and with inlining
(gcci); percentages are relative to the Vélus column

even produce a worst schedule than the naive algorithm. Second, the body of some
benchmarked nodes (stopwatch, buttons) are defined as a single state machine where each
state only contain simple equations. In the code generated from such a state machine,
the top-level conditionals may always be fused; therefore, the scheduling heuristic has
less importance.

Not removing dead NLustre equations as described in section 5.2.3.2 increases the
WCET by 6%. There is no dead equation in the benchmark sources, which means the
equations removed by these optimizations are those introduced by the compilation of
switch blocks.

Finally, we evaluate the improved compilation of last variables, which permits
the optimization of dead update equations of the form state(x) := state(x). On
the benchmarks that use last variables, using the simpler compilation scheme that
compiles last to fby early raises the WCET by 4%. Interestingly, deactivating only the
optimization that actually removes the dead updates does not change the WCET. It
seems that, when using the improved compilation for last, the dead-code elimination of
CompCert is able to remove the code generated from these updates.

We then compare the WCET of the code generated by Vélus with that generated
using Heptagon 1.05 and different back-end C compilers. The most favourable comparison
is with Heptagon using CompCert as a back-end; in that case, Vélus is systematically
faster than Heptagon. This is due to the combination of the optimizations implemented
in Vélus but not in Heptagon. However, our experimental results also show that the
gains from front-end optimizations are largely outdone by the back-end optimizations
of GCC. Indeed, while one of CompCert’s advantages is to provide optimizations with
formal correctness guarantees, these optimizations are less aggressive than that of GCC,
even when limited by the -O1 flag. In particular, CompCert’s inlining heuristic is not
fine-tuned to handle the many small functions generated by Vélus.

6.2 Proof Engineering and Practical Concerns

A major challenge of our work was to implement and verify an efficient compilation
scheme for a realistic language while keeping the language specification understandable

171

6. Conclusion

Feature Ex
ecu

tab
le

Sp
eci

fic
ati

on

Pr
oo

fs

To
tal

Com
pil

e tim
e (m

in)

Eff
ort

(m
on

th
s)

Vélus v3 (w/ datatypes) 3965 21 439 46 996 72 400 35
reset blocks +199 +1829 +4590 +6618 42 3
remove anonymous variables +4 −793 −2015 −2804 49 1
local blocks +142 +1647 +5048 +6837 50 4
switch blocks +134 +1126 +3680 +4940 53 2
last variables +246 +770 +254 +1270 55 2
state machines +465 +1776 +2563 +4794 60 5
completion +88 +581 +1718 +2387 62 2
better last compilation +504 +1754 +4007 +6265 65 3
Vélus v4 5747 30 119 66 841 102 707 65

Table 6.2: Number of Coq LoC for each added feature in Vélus

and the correctness proofs simple. While we think we have achieved the first two points,
we are not completely satisfied with the last.

To discuss the size of the proof, and the effort behind it, we present in table 6.2 the
“cost” in terms of number of Coq Lines of Code (LoC) for each major feature added to
Vélus and discussed in this dissertation. We split the LoC into three categories: (i) the
definitions that are extracted to OCaml code and actually executed in the compiler,
(ii) the specification which includes the dynamic and static semantic definitions as well
as the statements of all intermediate lemmas, and (iii) the proofs written in Ltac. The
fifth column displays the sum of these three categories. We omit from this total the
administrative (module definition and instantiation), comments and blank lines. The
number of LoC was measured using a tool based on coqwc1. The table also presents the
cumulative time necessary to compile Vélus at each step. These measurements were done
using 4 cores (make -j4) on a system with an Intel i7 running at a base clock speed
of 1.80GHz, and 16Go of RAM. This does not include the time necessary to compile
CompCert, which is invariant. The last column shows an estimate of the effort that was
necessary to implement the feature, in months, for a single developer. This does not
include the language design, which was done before the start of this thesis.

The first row corresponds to the version of Vélus that handles just the core dataflow
language, with normalization [EMSOFT21] and enumerated types. In this version of
Vélus, the executable code represents around 6% of the total LoC. In the subsequent rows,
we distinguish two kind of features: those that affect only the front-end of Vélus (local and
switch blocks, state machines, basic last variables, completion), and those that require
changes to the whole compiler (reset blocks, improved compilation of last variables).

1https://github.com/coq/coq/blob/master/tools/coqwc.mll

172

https://github.com/coq/coq/blob/master/tools/coqwc.mll

6.2. Proof Engineering and Practical Concerns

The latter usually require more effort. However, features that only affect the front-end
may also be costly, especially in terms of specification and proof. For instance, arbitrarily
nested local blocks are an unassuming feature that required a lot of work. This is due, in
part, to the generalization of the dependency analysis and the proof schemes described in
chapter 3. Recall also that local blocks are used extensively in the compilation of other
features; in a sense, the time spent on this construction is capitalized on by later, more
complex constructs.

The removal of anonymous variables is a simplification of the clock typing of node
instantiations that resulted in the rules presented in section 2.4.4. In the previous version
of Vélus, instantiations of nodes with clock-type dependencies between outputs could
be nested. Specifying the clock typing of such instantiations required the use of unique,
anonymous variables at the instantiation point. Handling these variables became difficult,
especially with the introduction of nested local declarations, and we decided to remove
them. This limits the language somewhat, but we believe avoiding this compromise and
introducing the subsequent constructions would have increased the complexity of the
proofs to an unmanageable level.

In the previous section, we showed that the WCET impact of using the more optimized
compilation scheme for last variables, on our benchmarks, is just 4%. We now see that
the effort necessary to achieve this gain accounts for 6% of the total LoC of the compiler.
Considering the small performance gains, it is unclear if this effort was worth it. Indeed,
in addition to the existing effort, this modification complicates the intermediate languages
used in the compiler, which may make future extensions more difficult. On the other
hand, independently of the performance gains, the extension of intermediate languages
clarified some design choices, especially regarding Stc.

The final Vélus project, with all these features, still has a code-to-total ratio of 6%.
This ratio is considerably lower than that of CompCert, which is around 17%. This is not
an issue in and of itself, since this discrepancy may be due to several justified factors:
the differences between the semantic models of the intermediate languages of Vélus, the
number of static invariants used for each language, the complexity of the source language
itself, etc. However, we are more concerned about the maintainability of Vélus. We have
seen that even adding or removing a small feature (anonymous variables, completion)
has a significant impact on the code size. In addition, table 6.2 only shows the relative
diff. The absolute number of LoC modified to implement each feature may be between 2
and 10 times as large. In addition, the amount of work necessary for future extensions
of Vélus would not be constant. Suppose that we were to add a new control block, that
compiles after switch blocks but before local declarations. This would impact all the
compilation passes before its elimination: completion, state machines, switch. Even if
the treatment of this block by these passes is trivial, the corresponding proofs may not
be, due to the complexity of some inductive invariants. This is a serious engineering issue,
which may severely limit, or at least slow down, future extensions of Vélus. We see three
possible mitigations to this problem, which we discuss from least to most invasive.

A first avenue might be to dedicate more time to proof automation. With well thought-
out tactics designed to prove recurring obligations related to the different intermediate

173

6. Conclusion

languages, trivial cases that currently require a lot of busy work could be automated.
This kind of automation has two downsides. First, it generally involves automatic proof
search, which may increase proof-checking time. Second, and more importantly, while an
automated proof may be more resistant to changes in the definitions and implementation,
if it “breaks”, then “fixing” the proof may be more difficult, as it is not clear which part of
the automated tactic needs to be modified to fit the new definitions.

A complementary approach would be to rewrite some of the definitions of Vélus to
simplify the proofs. While we do not want to modify the semantic definitions, some of the
static invariants (typing, clock-typing, other well-formedness invariants) may be combined
to form definitions that are easier to manipulate in proofs. Another possibility would be
to define a generic framework for program transformations, which specific compilation
passes would be instances of. The repetitive, boilerplate proofs could then be established
once for this framework, and the proof for each compilation pass would focus on the
interesting details. This is an attractive idea, but we do not yet have a concrete idea of
what such a framework might look like.

A final idea stems from the observation that a significant amount of the Vélus proofs
concern the complex static invariants used in the source and intermediate languages.
Indeed, the correct typing and clock-typing of a Vélus program are checked at the start
of the compilation chain, and are necessary up to the very end of the chain. Therefore,
each of the numerous compilation passes must provably preserve typing and clock typing.
This is not necessary in CompCert: when a semantic correctness proof requires the source
program to be well-typed, a decision procedure simply re-checks the types of the program.
If the procedure succeeds, the program is proven to be well-typed; if it fails, then the
compiler aborts. This is a kind of translation validation. Doing the same in Vélus would
reduce the proof effort to proving that (i) the decision procedures are correct, and (ii) the
dynamic semantics are preserved by each compilation pass. Adopting this approach would
have the usual downsides of translation validation. It would increase the time to compile
programs, due to the numerous re-checks. Also, if a compilation pass contains an error, it
may generate code that is not statically well-formed, which will be rejected by a later
check, aborting the compilation. To find such bugs, more testing of the compiler would
be required.

6.3 Open Questions

If the proof complexity can be kept in check, using one or several of the above techniques,
Vélus could still be a fertile ground for experimentation on the verification of synchronous
languages and programs. We are currently considering several projects that could leverage
the existing work.

Functional Semantics The relational semantics currently used in Vélus has proven to
be useful for proving the correctness of program transformations. However, this model
is sometimes too abstract. We have seen that establishing its determinism requires a
complex proof. Conversely, we have not proven the existence of a semantic model: we do

174

6.4. Concluding Remarks

not know if all (or even if any) statically well-formed programs have a semantics under
this model. Proving this last property is especially difficult, as it requires constructing
a witness of the history that is at the heart of our model. Executable semantic models
might answer these issues. We have experimented with implementing a constructive
state-based interpreter for the Vélus language, following [Col+23], but have not invested
enough time into refining the definitions or proving its correspondence with the relational
model. Other works are currently investigating a stream-based denotational model for
Vélus, where the semantics of an expression is given as a Coq function that produces a
(possibly finite) stream. The correspondence proof between this model and the current
relational model has made significant progress [BJP22]. This model also shows promise
for proving program properties. It is not yet clear how easy it will be to extend this
model to the control blocks discussed in this dissertation.

Additional Optimizations In the previous chapter, we outlined a few optimizations
that Vélus does not yet implement: constant propagation, node inlining, generalized
dataflow minimization. Implementing and verifying these optimizations at the NLustre
level should not be too difficult. In order to evaluate their benefits, it would be useful to
develop a larger set of benchmarks, possibly compatible with other dataflow-synchronous
compilers (Heptagon, Lustre v6, Scade 6).

Type-Based Causality Analysis Having implemented node inlining would also allow
for the compilation of node applications with non-atomic dependencies, such as the ones
described in section 3.6.1. To reason on the dependencies of such programs, we would
also need to implement and verify a type-based modular causality analysis. It is not clear
how this analysis would impact the proofs of determinism and clock correctness of Vélus.

Arrays and Records One major feature of Scade 6 is the support of functional arrays
and iterators [Mor07; CPP17]. An array of size n may be used to define n parallel
computations, n-ary delays, etc. They also allow for the definition of matrix operations.
Compiling arrays poses two major difficulties. First, the size of arrays must be known
statically; this requires a separate analysis, which may be complex for an expressive
language with type inference [CPP23]. Second, while these arrays are manipulated
functionally, their efficient compilation requires at least eliminating intermediate copies,
and at best compiling functional updates into in-place modification. We are aware of
work in that direction, but it is not yet clear how this would be mechanized in a proof
assistant.

6.4 Concluding Remarks

Although the language described in this dissertation is not novel, we believe that treating
it in an ITP has made some of the design choices and challenges more explicit. The
relational dataflow semantics highlights the correspondence between dataflow primitives
and state machines, which was already reflected in the first compilation scheme for these

175

6. Conclusion

constructs. Working with an ITP has also shown that, despite the apparent simplicity
of the definitions, the mechanized reasoning requires a quantity of technical details that
can become difficult to manage. These details are unavoidable when treating a realistic
language without compromise, and should inform future design decisions.

We have also felt the inertia that comes with complex and time-consuming proofs:
once a design choice is made, going back on it is costly. In a sense, this is the same
problem encountered when developing industrial qualified software (like Scade), where
the cost of qualification prevents rapid iteration. For this reason, it seems to us that
verified compilers implemented using proof assistants are best suited for well-established,
well-formalized languages. In that regard, our methodology for Vélus could have been
more efficient. Indeed, we worked iteratively, by adding features to the language one
by one, which leads to rewriting some proofs several times. If we were to start Vélus
again from scratch, it would be more efficient to start directly with the full language, and
designing the compiler from front-end to back-end.

We believe that our work could be applied to an industrial context. While it seems
unrealistic to completely verify an existing industrial compiler, we can see several ways of
integrating ITPs in the development and qualification process. Defining the semantics of
the language, and proving its desirable properties may increase confidence in the language
design, and be used for documentation purposes. The Ott tool [Sew+07], which was used
to typeset inference rules in this thesis, may also be used as a common source of truth
to generate both the documentation for a language and mechanized definitions for an
ITP. An interpreter verified with regard to these semantics could be used for testing
the compiler by comparing the interpretation of the source and compiled programs. A
complex compilation pass or optimization algorithm could be implemented and verified
in the ITP, and either integrated with the compiler, or used separately for testing and
comparison with the compiler. All of these ideas exploit mechanized formalization to
increase the confidence in the correctness of the compiler, facilitate the qualification
process, and clarify language and compiler design.

176

Appendix A

Type Systems and Static
Predicates of Vélus

A.1 Node Invariants

In this section, we detail the static node predicates expected of valid Vélus programs.
These invariants are used extensively in compilation proofs. They appear as dependent
fields of the node record, that is, directly in the Lustre AST.

A.1.1 Variables Defined

The first invariant, presented in figure A.1, ensures that the variables defined by equations
correspond exactly to the declared outputs and local variables of the node, with no
duplication. The variables defined by a block are modeled by a list. The rule for equations
simply exports the variables at left of the equation. A last equation does not define the
current value of any variable. A reset blocks defined the same variables as its underlying
blocks. The underlying blocks of a local declaration should define at least the declared
local variables.

The rule for switch and state machines are more complicated: we decompose them
in two. Each branch of a switch should define a subset Γ′ of the defined variables of
the whole switch Γ. The variables that do not belong in this subset, that is Γl, are the
implicitly defined ones, and so they should all be declared with a last. To ensure they
are, the lists indicate, for each variable, whether or not it is declared with a last using
a boolean, that is accessed by reading Γ(x). Additionally, the domain of the causality
label substitution σ should be included in the defined variables; this is imperative when
proving properties of causal nodes.

The same rule applies for the state of a state machines, composed with the prerequisite
of local declarations. Finally, a node is well-formed if the variables defined by its block
are a permutation of the declared outputs of the node.

We also need to constrain the definitions of initial values of last variables. This is
accomplished by the LastsDefined invariant of figure A.2. Only last equations declare

177

A. Type Systems and Static Predicates of Vélus

VarsDefined ([xi]i = es) [xi]
i VarsDefined (last x = e) []

VarsDefined blks Γ
VarsDefined (reset blks every e) Γ

Permutation (Γ + locs) Γ′ VarsDefined blks Γ′

VarsDefined (var locs let blks tel) Γ

PermutationΓ (Γ′ + Γl)
VarsDefined blks Γ′ ∀x , x ∈ Γl =⇒ Γl (x) = T σ ⊆ Γ

VarsDefined (C doσblks) Γ

∀i , VarsDefined bri Γ

VarsDefined (switch e [(bri)]i end) Γ

PermutationΓ (Γ′ + Γl) Permutation (Γ′ + locs) Γ′′

VarsDefined blks Γ′′ ∀x , x ∈ Γl =⇒ Γl (x) = T σ ⊆ Γ

VarsDefined (state C varσ locs do blks until trunt unless trunl) Γ

∀i , VarsDefined autsti Γ

VarsDefined (automaton initially autinits [(autsti)]i end) Γ

Permutation outs Γ VarsDefined blk Γ
VarsDefined (node f (ins) returns (outs) blk)

Figure A.1: Checking Defined Variables Lustre/LSyntax.v:276

last variables. The rule for local declarations only take into account the variables that
are declared as last. These declarations may “cross” reset blocks, but not switch or
state machines. This is because, for the compilation model to be efficient, a last should
be initialized with a constant. This is not the case if the initialization appears under a
switched block, and so we forbig this possibility; this also simplifies slightly some proofs.

A.1.2 No Duplication in Declarations, No Shadowing

The NoDupLocals invariants presented in figure A.3 ensures both that there is no name
duplication in any local declaration, and that, as explained in section 2.7, there is no
shadowing of global variables by local declarations. It is trivially true for equations and
last equations. The NoDupMembers predicate ensures that there is no name duplication
in a list of declarations. When encountering a local declaration, we need to check that
(1) its declarations do not contain duplicates, (2) they are disjoint from the global ones
in context Γ, and (3) the underlying blocks are also NoDupLocals, under the augmented

178

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSyntax.html#LSYNTAX.VarsDefined

A.2. Type System

LastsDefined ([xi]i = es) [] LastsDefined (last x = e) [x]

Permutation (Γ + filter haslast locs) Γ′ LastsDefined blks Γ′

LastsDefined (var locs let blks tel) Γ

LastsDefined blks Γ
LastsDefined (reset blks every e) Γ

∀i , LastsDefined blksi []

LastsDefined (switch e [(Ci do blksi)]i end) []

LastsDefined blks (filter haslast locs)
LastsDefined (state C varσ locs do blks until trunt unless trunl)

∀i , LastsDefined autsti
LastsDefined (automaton initially autinits [(autsti)]i end) []

Permutation (filter haslast outs) Γ LastsDefined blk Γ
LastsDefined (node f (ins) returns (outs) blk)

Figure A.2: Checking Defined Last Variables Lustre/LSyntax.v:378

context locs +Γ. The other rules for blocks are unsurprising; note that the predicate also
ensures that there is no duplication in the keys of causality label substitutions. Again,
this is necessary to prove properties of causal nodes. Finally, a node is well formed if
there is no duplication in its global variables (inputs and outputs), and if its body is well
formed.

A.1.3 Shape of identifiers

The final static node obligations concern the identifiers used within a node. It is used to
justify the freshness of identifiers generated between each pass, as discussed in section 4.2.
It essentially consists in applying the AtomOrGensym predicate, presented in listing 4.5,
to all declarations in the node. The rules defining this judgement are given in figure A.4.

A.2 Type System

The type system of Vélus is straightforward. It includes scalar types from the back
end, and enumerated types. We write [|Ci]

i for the enumerated type declared with
constructors Ci. To be well formed, enumerated types must be declared in the source
file, with no duplicate constructors. This rule is specified in figure A.5. It also gives the

179

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSyntax.html#LSYNTAX.LastsDefined

A. Type Systems and Static Predicates of Vélus

NoDupLocalsΓ ([xi]
i = es) NoDupLocalsΓ (last x = e)

NoDupLocalsΓ blks

NoDupLocalsΓ (reset blks every e)

NoDupMembers locs ∀x , x ∈ locs =⇒ x /∈ Γ NoDupLocals (Γ + locs) blks

NoDupLocalsΓ (var locs let blks tel)

NoDupMembersσ NoDupLocalsΓ blks

NoDupLocalsΓ (C doσblks)

∀i , NoDupLocalsΓ bri

NoDupLocalsΓ (switch e [(bri)]i end)

NoDupMembersσ
NoDupMembers locs ∀x , x ∈ locs =⇒ x /∈ Γ NoDupLocals (Γ + locs) blks

NoDupLocalsΓ (state C varσ locs do blks until trunt unless trunl)

∀i , NoDupLocalsΓ autsti

NoDupLocalsΓ (automaton initially autinits [(autsti)]i end)

NoDupMembers (ins + outs) NoDupLocals (ins + outs) blk

NoDupLocals (node f (ins) returns (outs) blk)

Figure A.3: Checking Non-Duplication Lustre/LSyntax.v:416

typing rules for clock annotations: for a sampled clock ck on C(x), x must be declared
with an enumerated type of which C is a constructor.

The judgement G,Γ ⊢wt e : tys specifies that an expression e is well-typed with types
tys. Figure A.6 details the corresponding typing rules. Scalar constants are always well
typed. Enumerated constructors are well typed if the constructor belongs to a declared
enumerated type. The type of a variable or last variable is looked up in the environment.
Unary and binary operators are annotated with their input and output types. All other
operators preserve the types of their operands. In addition, the condition of when, merge,
and case must be of an enumerated type matching the constructors used in the expression.

Figure A.7 details the typing rules for blocks and nodes. An equation is well typed if
the types of variables at left correspond to those of expressions at right. The condition
of a reset block must be boolean; we write bool as a shortcut for the enumerated type
with constructors false | true, which is implicitly defined in every program. The blocks
under a local declaration are typed with an extended environment. The constructors of
a switch must be a permutation of those of the enumerated type of the condition. All
the transition conditions of an automaton must be boolean, and all the transition targets

180

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSyntax.html#LSYNTAX.NoDupLocals

A.2. Type System

’$’ /∈ str_to_pos x

AtomOrGensymprefs x

pref ∈ prefs

AtomOrGensymprefs (gensym pref hint x)

GoodLocalsprefs (x1, ... , xn) = es GoodLocalsprefs last x = e

GoodLocalsprefs blks

GoodLocalsprefs reset blks every e

∀x , x ∈ locs =⇒ AtomOrGensymprefs x GoodLocalsprefs blks

GoodLocalsprefs var locs let blks tel

∀i , GoodLocalsprefs blksi

GoodLocalsprefs switch e [Ci do blksi]i end

∀x , x ∈ locs =⇒ AtomOrGensymprefs x GoodLocalsprefs blks

GoodLocalsprefs (state C varσ locs do blks until trunt unless trunl)

∀i , GoodLocalsprefs autsti

GoodLocalsprefs automaton initially autinits [autsti]i end

∀x , x ∈ (ins + outs) =⇒ AtomOrGensymprefs x GoodLocalsprefs blk

GoodLocalsprefs (node f (ins) returns (outs) blk)

Figure A.4: Checking Non-Duplication Lustre/LSyntax.v:416

type tx = [|Ci]
i ∈ G NoDup [Ci]

i

G ⊢wt [|Ci]
i

G ,Γ ⊢wt •
G ,Γ ⊢wt ck Γ(x) = [|Ci]

i G ⊢wt [|Ci]
i C ∈ [Ci]

i

G ,Γ ⊢wt ck onC (x)

Figure A.5: Typing rules for clocks Lustre/LTyping.v:41

181

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LSyntax.html#LSYNTAX.NoDupLocals
https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LTyping.html#LTYPING.wt_clock

A. Type Systems and Static Predicates of Vélus

G ,Γ ⊢wt c : [type_const c]

G ⊢wt [|Ci]
i C ∈ [Ci]

i

G ,Γ ⊢wt C : [[|Ci]
i]

Γ(x) = ty

G ,Γ ⊢wt x : [ty]

Γ(last x) = ty

G ,Γ ⊢wt last x : [ty]

G ,Γ ⊢wt e1 : [ty1] ⊢ ⋄ty1 : ty

G ,Γ ⊢wt ⋄ e1 : [ty]

G ,Γ ⊢wt e1 : [ty1] G ,Γ ⊢wt e2 : [ty2] ⊢ ⊕ty1×ty2 : ty

G ,Γ ⊢wt e1 ⊕ e2 : [ty]

G ,Γ ⊢wt es0 : [tyj]
j G ,Γ ⊢wt es1 : [tyj]

j

G ,Γ ⊢wt es0 fby es1 : [tyj]j
G ,Γ ⊢wt es0 : [tyj]

j G ,Γ ⊢wt es1 : [tyj]
j

G ,Γ ⊢wt es0 -> es1 : [tyj]j

Γ(x) = [|Ci]
i G ⊢wt [|Ci]

i C ∈ [Ci]
i G ,Γ ⊢wt es : [tyj]

j

G ,Γ ⊢wt es whenC (x) : [tyj]
j

Γ(x) = [|Ci]
i G ⊢wt [Ci]

i Permutation [Ci]
i [C ′

i]
i ∀i , G ,Γ ⊢wt esi : [tyj]

j

G ,Γ ⊢wt merge x [C ′
i =>esi]

i : [tyj]
j

G ,Γ ⊢wt e : [[|Ci]
i] G ⊢wt [Ci]

i Permutation [Ci]
i [C ′

i]
i ∀i , G ,Γ ⊢wt esi : [tyj]

j

G ,Γ ⊢wt case e of [C ′
i =>esi]

i : [tyj]
j

G ,Γ ⊢wt es : [tyi]
i G(f) = node f ([xi : tyi]i) returns ([yj : ty ′j]

j) blk

G ,Γ ⊢wt f (es) : [ty
′
j]
j

Figure A.6: Typing rules for expressions Lustre/LTyping.v:63

must be declared states of the automaton. Finally, a node is well typed if its body is well
typed under the declared input and output variables.

A.3 Clock-Type System

We have already discussed the clock-type system of Vélus in chapter 2. Figures A.8
and A.9 complete the clock-typing rules for expressions and blocks. In particular, they
show the rules for the fby and initialization arrow, which both preserve the clock types
of their sub-expressions. The case operators forces all the branches to be on the same
clock type as the condition.

Blocks under a local declaration are typed in an extended environment. The rule
also requires that the local clocks be well formed under the extended environment. The

182

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LTyping.html#LTYPING.wt_exp

A.3. Clock-Type System

∀i , Γ(xj) = tyj G ,Γ ⊢wt es : [tyj]
j

G ,Γ ⊢wt [xj]
j = es

Γ(last x) = ty G ,Γ ⊢wt e : [ty]

G ,Γ ⊢wt last x = e

G ,Γ ⊢wt blks G ,Γ ⊢wt e : [bool]

G ,Γ ⊢wt reset blks every e

G , (Γ + locs) ⊢wt blks

G ,Γ ⊢wt var locs let blks tel

G ,Γ ⊢wt e : [[|Ci]
i] G ⊢wt [|Ci]

i Permutation [Ci]
i [C ′

i]
i ∀i , G ,Γ ⊢wt blksi

G ,Γ ⊢wt switch e [C ′
i do blksi]

i end

NoDup [Ci]
i G ,Γ, [Ci]

i ⊢wt autinits ∀i , G ,Γ, [Ci]
i ⊢wt autscopei

G ,Γ ⊢wt automaton initially autinits [stateCi autscopei]
i end

C ∈ [Ci]
i NoDup [Ci]

i ∀i , G ,Γ ⊢wt blksi ∀i , G ,Γ, [Ci]
i ⊢wt transi

G ,Γ ⊢wt automaton initiallyC [stateCi do blksi unless transi]i end

G , (Γ + locs), constrs ⊢wt trans G , (Γ + locs) ⊢wt blks

G ,Γ, constrs ⊢wt var locs do blks until trans

C ∈ constrs

G ,Γ, constrs ⊢wt otherwiseC

G ,Γ ⊢wt e : [bool] C ∈ constrs

G ,Γ, constrs ⊢wt C if e; autinits

G ,Γ, constrs ⊢wt ϵ

G ,Γ ⊢wt e : [bool] C ∈ constrs

G ,Γ, constrs ⊢wt if e thenC trans

G ,Γ ⊢wt e : [bool] C ∈ constrs

G ,Γ, constrs ⊢wt if e continueC trans

G , (ins + outs) ⊢wt blk

G ⊢wt node f (ins) returns (outs) blk

Figure A.7: Typing rules for blocks and nodes Lustre/LTyping.v:203

183

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LTyping.html#LTYPING.wt_block

A. Type Systems and Static Predicates of Vélus

G ,Γ ⊢wc c : [•]
Γ(x) = ck

G ,Γ ⊢wc x : [ck]

Γ(x) = ck

G ,Γ ⊢wc x : [(x : ck)]

G ,Γ ⊢wc e1 : [ck]

G ,Γ ⊢wc ⋄ e1 : [ck]

G ,Γ ⊢wc e1 : [ck] G ,Γ ⊢wc e2 : [ck]

G ,Γ ⊢wc e1 ⊕ e2 : [ck]

G ,Γ ⊢wc es0 : [ckj]
j G ,Γ ⊢wc es1 : [ckj]

j

G ,Γ ⊢wc es0 fby es1 : [ckj]j

G ,Γ ⊢wc es0 : [ckj]
j G ,Γ ⊢wc es1 : [ckj]

j

G ,Γ ⊢wc es0 -> es1 : [ckj]j
Γ(x) = ck G ,Γ ⊢wc es : [ck]j

G ,Γ ⊢wc es whenC (x) : [ck onC (x)]j

Γ(x) = ck ∀i , G ,Γ ⊢wc esi : [ck onCi(x)]
j

G ,Γ ⊢wc merge x [Ci=>esi]i : [ck]j

G ,Γ ⊢wc e : [ck] ∀i , G ,Γ ⊢wc esi : [ck]
j

G ,Γ ⊢wc case e of [Ci=>esi]i : [ck]j

G ,Γ ⊢wc es : [ncki]
i G(f) = node f ([xi on icki]i) returns ([yj on ockj]j) blk

∀i , WellInstantiatedbckσ (xi : icki)ncki ∀j , WellInstantiatedbckσ (yj : ockj) (_ : ck ′j)

G ,Γ ⊢wc f (es) : [ck
′
j]
j

Γ(last x) = ck

G ,Γ ⊢wc last x : [ck]

Figure A.8: Clock-typing rules for expressions Lustre/LClocking.v:55

clock-typing rules for state machines follow the same ideas as the ones for switch blocks:
the sub-blocks are clock typed in a sampled environment. Additionally, the environment
of state machines with weak transitions is extended with the local declarations that may
be used in transitions.

184

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_exp

A.3. Clock-Type System

∀j , Γ(xj) = ckj G ,Γ ⊢wc es : [ckj]
j

G ,Γ ⊢wc [xj]
j = es

∀j , Γ(y ′j) = ck ′j
G ,Γ ⊢wc es : [ncki]

i G(f) = node f ([xi on icki]i) returns ([yj on ockj]j) blk
∀i , WellInstantiatedbckσ (xi : icki)ncki ∀j , WellInstantiatedbckσ (yj : ockj) (y

′
j : ck

′
j)

G ,Γ ⊢wc [y
′
j]
j = f (es)

Γ(last x) = ck G ,Γ ⊢wc e : [ck]

G ,Γ ⊢wc last x = e

G ,Γ ⊢wc e : [ck] G ,Γ ⊢wc blks

G ,Γ ⊢wc reset blks every e

⊢wc (Γ + locs) G , (Γ + locs) ⊢wc blks

G ,Γ ⊢wc var locs let blks tel

G ,Γ ⊢wc e : [ck] ∀x ck ′, Γ′(x) = ck ′ =⇒ Γ(x) = ck ∧ ck ′ = • ∀i , G ,Γ′ ⊢wc blksi

G ,Γ ⊢wc switch e [Ci do blksi]i end

∀x ck ′, Γ′(x) = ck ′ =⇒ Γ(x) = ck ∧ ck ′ = •
G ,Γ′ ⊢wc autinits ∀i , G ,Γ′ ⊢wc autscopei

G ,Γ ⊢wc automaton initially autinitsck [stateCi autscopei]
i end

∀x ck ′, Γ′(x) = ck ′ =⇒ Γ(x) = ck ∧ ck ′ = •
∀i , G ,Γ′ ⊢wc blksi ∀i , G ,Γ′ ⊢wc transi

G ,Γ ⊢wc automaton initiallyC ck [stateCi do blksi unless transi]i end

G , (Γ + locs) ⊢wc trans G , (Γ + locs) ⊢wc blks

G ,Γ ⊢wc var locs do blks until trans

G ,Γ ⊢wc otherwiseC

G ,Γ ⊢wc e : [•]
G ,Γ ⊢wc C if e; autinits

G ,Γ ⊢wc ϵ

G ,Γ ⊢wc e : [•]
G ,Γ ⊢wc if e thenC trans

G ,Γ ⊢wc e : [•]
G ,Γ ⊢wc if e continueC trans

⊢wc ins ⊢wc (ins + outs) G , (ins + outs) ⊢wc blk

G ⊢wc node f (ins) returns (outs) blk

Figure A.9: Clock-typing rules for blocks Lustre/LClocking.v:167

185

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.LClocking.html#LCLOCKING.wc_block

Appendix B

Full Compilation of the
Introductory Example

In this appendix, we illustrate the compilation scheme used in the compiler by applying it
to the drive_sequence example presented in the introduction. We show the intermediate
programs after each separate pass. The source program is reproduced in the listing below.

node drive_sequence(step : bool)
returns (mA, mB : bool)
let

last mA = true;
last mB = true;
switch step
| true do (mA, mB) = (not (last mB), last mA)
| false do
end;

tel

Listing B.1: Source node

The completion pass described in section 4.5 completes the definitions of mA and
mB by adding mA = last mA and mb = last mB equations in the second branch. This
transformation makes explicit the implicit equations that already exist in the semantics.

187

B. Full Compilation of the Introductory Example

node drive_sequence (step : bool) returns (mA, mB : bool)
let

last mA = true;
last mB = true;
switch step
| true do

(mA, mB) = (not (last mB), last mA)
| false do

mA = last mA;
mB = last mB;

end
tel

Listing B.2: Completed

The pass that compiles state machines does not do anything to this node, since it
does not contain any. The next pass, described in section 4.8 compiles away the switch
block. Each variable used in the switch is sampled by when, and the variables defined
by the switch are now defined by a merge. Some of the sampling equations are actually
useless; they are greyed-out in the listing and will be optimized away by a later pass.

node drive_sequence (step : bool) returns (mA, mB : bool)
let

last mA = true;
last mB = true;
var

swi$step$1, swimA2, swimB3, swimA4, swimB5 : bool when true(step);
swi$step$6, swimA7, swimB8, swimA9, swimB10 : bool when false(step);

let
mA = merge step (true => swimA2) (false => swimA7);
mB = merge step (true => swimB3) (false => swimB8);
(swimA2, swimB3) = (not swimB5, swimA4);
swimA4 = last mA when true(step);
swimB5 = last mB when true(step);
swimA7 = swimA9;
swimB8 = swimB10;
swimA9 = last mA when false(step);
swimB10 = last mB when false(step);
swi$step$1 = step when true(step);
swi$step$6 = step when false(step);

tel
tel

Listing B.3: Removed switch

The nested local scope that was introduced by the previous pass is “flattened” into a
top-level local scope by the pass described in section 4.9. Since the node does not contain

188

any duplicate variable names, no renaming is necessary.

node drive_sequence (step : bool) returns (mA, mB : bool)
var

swi$step$1, swimA2, swimB3, swimA4, swimB5 : bool when true(step);
swi$step$6, swimA7, swimB8, swimA9, swimB10 : bool when false(step);

let
last mA = true;
last mB = true;
mA = merge step (true => swimA2) (false => swimA7);
mB = merge step (true => swimB3) (false => swimB8);
(swimA2, swimB3) = (not swimB5, swimA4);
swimA4 = last mA when true(step);
swimB5 = last mB when true(step);
swimA7 = swimA9;
swimB8 = swimB10;
swimA9 = last mA when false(step);
swimB10 = last mB when false(step);
swi$step$1 = step when true(step);
swi$step$6 = step when false(step);

tel

Listing B.4: Flattened local scope

The unnesting pass described in section 4.10 breaks the fifth equation in two simpler
ones.

node drive_sequence (step : bool) returns (mA, mB : bool)
var

swi$step$1, swimA2, swimB3, swimA4, swimB5 : bool when true(step);
swi$step$6, swimA7, swimB8, swimA9, swimB10 : bool when false(step);

let
last mA = true;
last mB = true;
mA = merge step (true => swimA2) (false => swimA7);
mB = merge step (true => swimB3) (false => swimB8);
swimA2 = not swimB5;
swimB3 = swimA4;
swimA4 = last mA when true(step);
swimB5 = last mB when true(step);
swimA7 = swimA9;
swimB8 = swimB10;
swimA9 = last mA when false(step);
swimB10 = last mB when false(step);
swi$step$1 = step when true(step);
swi$step$6 = step when false(step);

tel

Listing B.5: Unnested

189

B. Full Compilation of the Introductory Example

The outputs of the nodes are used with last, which must be simplified by the
pass described in section 4.11. This pass introduces new last variables, lastmA1 and
lastmB2, which replace all occurences of mA and mB.

node drive_sequence (step : bool) returns (mA, mB : bool)
var

swi$step$1, swimA2, swimB3, swimA4, swimB5 : bool when true(step);
swi$step$6, swimA7, swimB8, swimA9, swimB10 : bool when false(step);
lastmA1 : bool; lastmB2 : bool;

let
last lastmA1 = true;
last lastmB2 = true;
lastmA1 = merge step (true => swimA2) (false => swimA7);
mA = lastmA1;
lastmB2 = merge step (true => swimB3) (false => swimB8);
mB = lastmB2;
swimA2 = not swimB5;
swimB3 = swimA4;
swimA4 = last lastmA1 when true(step);
swimB5 = last lastmB2 when true(step);
swimA7 = swimA9;
swimB8 = swimB10;
swimA9 = last lastmA1 when false(step);
swimB10 = last lastmB2 when false(step);
swi$step$1 = step when true(step);
swi$step$6 = step when false(step);

tel

Listing B.6: Normalized lasts

There are no fby equations to be simplified in this program. The translation of this
program to NLustre only reorders the branches of the merge.

190

The next pass, section 5.2.3.1, replaces some variables by the simple expressions that
define them. In particular, it reconstructs the syntactic relation between lastmA1 and
last lastmA1 which was lost during the compilation of switch.

node drive_sequence (step : bool) returns (mA, mB : bool)
var

swi$step$1, swimA2, swimB3, swimA4, swimB5 : bool when true(step);
swi$step$6, swimA7, swimB8, swimA9, swimB10 : bool when false(step);
lastmA1 : bool; lastmB2 : bool;

let
last lastmB2 = true;
last lastmA1 = true;
lastmA1 =

merge step
(false => (last lastmA1 when false(step)))
(true => (not (last lastmB2 when true(step))));

mA = lastmA1;
lastmB2 =

merge step
(false => (last lastmB2 when false(step)))
(true => (last lastmA1 when true(step)));

mB = lastmB2;
swimA2 = not (last lastmB2 when true(step));
swimB3 = last lastmA1 when true(step);
swimA4 = last lastmA1 when true(step);
swimB5 = last lastmB2 when true(step);
swimA7 = last lastmA1 when false(step);
swimB8 = last lastmB2 when false(step);
swimA9 = last lastmA1 when false(step);
swimB10 = last lastmB2 when false(step);
swi$step$1 = step when true(step);
swi$step$6 = step when false(step);

tel

Listing B.7: Inlined simple expressions

191

B. Full Compilation of the Introductory Example

Then, the dead equations are eliminated by the pass described in section 5.2.3.2. In
particular, it removes the equations introduced during the compilation of switch, as well
as those “inlined” by the previous pass.

node drive_sequence (step : bool) returns (mA, mB : bool)
var lastmA1 : bool; lastmB2 : bool;
let

last lastmB2 = true;
last lastmA1 = true;
lastmA1 =

merge step
(false => (last lastmA1 when false(step)))
(true => (not (last lastmB2 when true(step))));

mA = lastmA1;
lastmB2 =

merge step
(false => (last lastmB2 when false(step)))
(true => (last lastmA1 when true(step)));

mB = lastmB2;
tel

Listing B.8: Removed dead equations

The NLustre node is then translated into an Stc system following the scheme presented
in section 5.3.4.
system drive_sequence {

init lastmA1 = true, lastmB2 = true;
transition(step : bool) returns (mA, mB : bool)
{

update lastmA1 =
merge step

(false => (last lastmA1 when false(step)))
(true => (not (last lastmB2 when true(step))))

mA = lastmA1
update lastmB2 =

merge step
(false => (last lastmB2 when false(step)))
(true => (last lastmA1 when true(step)))

mB = lastmB2
}

}

Listing B.9: Translated to Stc

192

The node contains an update cycle between state variables lastmA1 and lastmB2.
It is cut by adding a copy of last lastmB2, using the algorithm of section 5.4.2.2.

system drive_sequence {
init lastmB2 = true, lastmA1 = true;
transition(step : bool) returns (mA : bool; mB : bool)
var stc$last$mB$2$1 : bool;
{

update lastmA1 =
merge step

(false => (last lastmA1 when false(step)))
(true => (not (stc$last$mB$2$1 when true(step))))

stc$last$mB$2$1 = last lastmB2
mA = lastmA1
update lastmB2 =

merge step
(false => (last lastmB2 when false(step)))
(true => (last lastmA1 when true(step)))

mB = lastmB2
}

}

Listing B.10: Cut update cycles

Then, the node is scheduled by the algorithm described in section 5.4.2.

system drive_sequence {
init lastmB2 = true, lastmA1 = true;
transition(step : bool) returns (mA, mB : bool)
var stc$last$mB$2$1 : bool;
{

stc$last$mB$2$1 = last lastmB2
update lastmB2 =

merge step
(false => (last lastmB2 when false(step)))
(true => (last lastmA1 when true(step)))

update lastmA1 =
merge step

(false => (last lastmA1 when false(step)))
(true => (not (stc$last$mB$2$1 when true(step))))

mA = lastmA1
mB = lastmB2

}
}

Listing B.11: Scheduled

193

B. Full Compilation of the Introductory Example

The node is then translated to Obc, following the scheme described in section 5.4. In
the body of the dissertation, we omitted the default branches of switches. The actual
compiler places the statement that would be under the last branch of the switch in the
default branch. With this scheme, the generated C switch does one less test.

class drive_sequence {
state lastmB2 : bool;
state lastmA1 : bool;

method step(step : bool) returns (mA, mB : bool)
var stc$last$mB$2$1 : bool
{

stc$last$mB$2$1 := state(lastmB2);
switch step {
| false => state(lastmB2) := state(lastmB2)
| true => _
| _ => state(lastmB2) := state(lastmA1)
};
switch step {
| false => state(lastmA1) := state(lastmA1)
| true => _
| _ => state(lastmA1) := not stc$last$mB$2$1
};
mA := state(lastmA1);
mB := state(lastmB2);
skip

}

method reset() {
state(lastmB2) := true;
state(lastmA1) := true;

}
}

Listing B.12: Translated to Obc

194

The two switch are fused into one by the pass described in section 5.4.4.

class drive_sequence {
state lastmB2 : bool;
state lastmA1 : bool;

method step(step : bool) returns (mA, mB : bool)
var stc$last$mB$2$1 : bool {

stc$last$mB$2$1 := state(lastmB2);
switch step {
| false => state(lastmB2) := state(lastmB2);

state(lastmA1) := state(lastmA1)
| true => _
| _ => state(lastmB2) := state(lastmA1);

state(lastmA1) := not stc$last$mB$2$1
};
mA := state(lastmA1);
mB := state(lastmB2)

}

method reset() {
state(lastmB2) := true;
state(lastmA1) := true

}
}

Listing B.13: Fused

195

B. Full Compilation of the Introductory Example

The final optimisation removes two dead update statements in the false branch of
the switch. The specification of this pass is trivial, as explained in section 5.1.4.

class drive_sequence {
state lastmB2 : bool;
state lastmA1 : bool;

method step(step : bool) returns (mA, mB : bool)
var stc$last$mB$2$1 : bool {

stc$last$mB$2$1 := state(lastmB2);
switch step {
| false => skip; skip
| true => _
| _ => state(lastmB2) := state(lastmA1);

state(lastmA1) := not stc$last$mB$2$1
};
mA := state(lastmA1);
mB := state(lastmB2)

}

method reset() {
state(lastmB2) := true;
state(lastmA1) := true

}
}

Listing B.14: Removed dead updates

196

Finally, Vélus generates Clight code from the Obc program. There are a few complex
details in this generation, in particular relating to the memory model of Clight. These
have been presented in [Bru20, Chapter 5].

void fun$step$drive_sequence(struct drive_sequence *obc2c$self,
struct fun$step$drive_sequence *obc2c$out,
unsigned char step) {

register unsigned char stc$last$mB$2$1;
stc$last$mB$2$1 = (*obc2c$self).last$mB$2;
switch (step) {

case 0:
/*skip*/;
break;

default:
(*obc2c$self).last$mB$2 = (*obc2c$self).lastmA1;
(*obc2c$self).last$mA$1 = !stc$lastmB2$1;

}
(*obc2c$out).mA = (*obc2c$self).lastmA1;
(*obc2c$out).mB = (*obc2c$self).lastmB2;
return;

}

void fun$reset$drive_sequence(struct drive_sequence *obc2c$self) {
(*obc2c$self).last$mB$2 = 1;
(*obc2c$self).last$mA$1 = 1;
return;

}

Listing B.15: Generated C code

197

Appendix C

A Semantic Preservation Proof

This appendix gives more detail about the semantic preservation proof for the compilation
of state machines. It focuses on one specific case: the compilation of state machines with
strong transitions, which was presented in section 4.7. Through this example, we try to
give a taste of the mechanized Coq proofs of Vélus. We start by presenting the complete
inductive invariant for blocks, which was summarized in invariant 2 (page 99).

Invariant 11 Compilation of State Machines Lustre/CompAuto/CACorrectness.v:558

if G,Γty ⊢wt blk (Hwt)
and G,Γck ⊢wc blk (Hwc)
and dom(Γck) ⊆ dom(Γty) (Hincl)

and NoDupLocals Γty blk (Hnd)
and ∀x, x ∈ dom(Γty) =⇒ AtomOrGensym∅ x (Hat)
and GoodLocals∅ blk (Hgood)

and G,H, bs ⊢ck blk (Hsem)
and dom(H) ⊆ dom(Γty) (Hdom)
and Γck , bs ⊢ck H (Hsc)

then G,H, bs ⊢ck
⌊
blk

⌋
The first two hypotheses indicate that the block must be well typed and well clock-

typed. The domain of typing environment Γty and clock-typing environment Γck may be
different. Indeed, recall that the clock-typing rules for switch and state machines restrict
the domain of the clock-typing environment; this is not the case in the typing rules. All
the same, the domain of Γck should be included in that of Γty .

The next three premises concern the uniqueness of existing and generated identifiers.
The Hnd premise indicates the absence of shadowing and duplication in local variables,
according to the rules of appendix A.1.2. The Hat and Hgood premises indicate that
all global and local variables use well-formed identifiers, according to the rules of ap-
pendix A.1.3: they are all either atomic, or formed using gensym with a prefix in the set

199

https://velus.inria.fr/phd-pesin/velusdoc/Velus.Lustre.CompAuto.CACorrectness.html#CACORRECTNESS.auto_block_sem

C. A Semantic Preservation Proof

prefs . Here, since the compilation of state machines is the first pass that introduces fresh
identifiers, the set of source prefixes is the empty set ∅.

The Hsem premise indicates that blk has a semantics under history H. The next
two premises add to the specification of H. First, its domain should be included in the
domain of Γty . This facilitates the extension of H with fresh variables. Second, H must
be well-clocked according to the rule of figure 4.5a: the streams associated with each
variable in H must adhere to the corresponding clock annotations. This facilitates the
proof of obligations related to the clocked semantic model.

We now describe the proof for the case a state machine with strong transitions,
that is, when blk = automaton initially C [state Cck

i do blks i unless tr i]
i end. The

proof is shown in listing C.1, as a simplified Coq proof script using the notations of this
dissertation. It starts by inverting the clock-typing and semantics hypotheses, which
exhibits some existential variables that are useful further in the proof. Inverting the Hsem
hypothesis for this block gives the following four premises.

H, bs ⊢ ck ⇓ bs ′ (Hck)
fby (const bs ′ (C,F)) sts1 ≡ sts (Hfby)
∀i,∀k, G, (selectCi,k

0 sts (H, bs)), Ci ⊢ tr i ⇓ (selectCi,k
0 sts sts1) (Htr)

∀i,∀k, G, (selectCi,k
0 sts1 (H, bs)), Ci ⊢ck blks i (Hblks)

Inverting the Hwc hypothesis gives a new clock-typing environment Γ′
ck and the following

three premises.

∀x ck ′, Γ′
ck (x) = ck ′ =⇒ Γck (x) = ck ∧ ck ′ = • (Henv)

∀i, G,Γ′
ck ⊢wc blks i (Hwcblks)

∀i, G,Γ′
ck ⊢wc tr i (Hwctr)

The proof begins (lines 4-19) with some forward reasoning using the assert tactic
to establish auxiliary facts needed in several later sub-goals. Hnin1 establishes that the
new identifiers do not appear in Γty . This is true because all identifiers in Γty are atoms and
the fresh identifiers have been generated by gensym. Hnin2 states that these identifiers
cannot appear in the domain of H either, since it is a subset of the domain of Γty . By
reasoning on the Fresh monad, we can also prove that these identifiers are all distinct.
Hincl’ proves that the domain of the inner clock-typing environment Γ′

ck is included in
that of Γck ; it follows directly from Henv.

The next two asserts exhibit properties of the semantic models. The state streams
sts and sts1 are both aligned with the base clock of the state machine bs ′, because the
fby operator used in the Hfby hypothesis forces alignment of its arguments.

200

1 inversion Hsem as [| | | | | |Hck Hfby Htr Hblks].
2 inversion Hwc as [| | | | | |Γ′

ck Henv Hwcblks Hwctr].
3
4 assert (Forall (fun id => id /∈ dom(Γty)) [xst; xres; xst1; xres1]) as Hnin1.
5 { ... apply Hat. ... }
6 assert (Forall (fun id => id /∈ dom(H)) [xst; xres; xst1; xres1]) as Hnin2.
7 { ... apply Hdom. ... }
8 assert (NoDup [xst; xres; xst1; xres1]) as Hnd.
9 { ... }

10 assert (dom(Γ′
ck) ⊆ dom(Γck)) as Hincl’.

11 { ... apply Henv. ... }
12
13 assert (clock-of sts ≡ bs ′) as Hac.
14 { ... apply ac_fby1 in Hfby. ... }
15 assert (clock-of sts1 ≡ bs ′) as Hac1.
16 { ... apply ac_fby2 in Hfby. ... }
17
18 remember {xst 7→ π1(sts);xres 7→ π2(sts);xst1 7→ π1(sts1);xres1 7→ π2(sts1)} as H ′.
19 assert (H ⊑ H +H ′) as Href’.
20 { ... apply Hnin2. }
21
22 eapply Sscope with (H ′:=H ′). (* figure 4.5c *)
23 - (* ∀x, x ∈ dom(H ′) ⇐⇒ x ∈ {xst , xres , xst1, xres1} *)
24 split; intros * Hin; ...
25 - (* {xst : ck , xres : ck , xst1 : ck , xres1 : ck}, bs ⊢ck (H +H ′) *)
26 constructor. (* figure 4.5a *)
27 intros * Hxck. (* {xst : ck , xres : ck , xst1 : ck , xres1 : ck}(x) = ck ′ *)
28 assert (ck′ = ck); [|subst]. { ... }
29 destruct Hxck as [Heq1|Heq1|Heq1|Heq1].
30 + (* (H +H ′), bs ⊢ck xst ck ⇓ π1(sts) *)
31 constructor. (* figure 3.12c *)
32 * (* (H +H ′)(xst) ≡ π1(sts) *) ...
33 * (* (H +H ′), bs ⊢ck ck ⇓ clock-of (π1(sts)) *)
34 rewrite clockof_proj1, Hac. apply Hck.
35 ... (* 3 more cases *)
36 - (* G, (H +H ′), bs ⊢ck eqfby;sw1;sw2 *)
37 repeat constructor.
38 +{ (* G, (H +H ′), bs ⊢ck (xst, xres) = (Cck, falseck) fby (xst1, xres1) *)
39 repeat econstructor.
40 - (* (H +H ′)(xst) ≡ π1(sts) *) ...
41 - (* (H +H ′)(xres) ≡ π2(sts) *) ...
42 - (* G, (H +H ′), bs ⊢ck Cck ⇓ [π1(const bs ′ (C,F))] *)
43 eapply add_whens_sem. ... apply Hck.
44 - (* G, (H +H ′), bs ⊢ck falseck ⇓ [π2(const bs ′ (C,F))] *)
45 eapply add_whens_sem. ... apply Hck.
46 - (* (H +H ′)(xst1) ≡ π1(sts1) *) ...
47 - (* (H +H ′)(xres1) ≡ π2(sts1) *) ...
48 - (* fby (π1(const bs ′ (C,F))) (π1(sts1)) ≡ π1(sts) *)
49 eapply fby_proj1, Hfby.
50 - (* fby (π2(const bs ′ (C,F))) (π2(sts1)) ≡ π2(sts) *)
51 eapply fby_proj2, Hfby.
52 }
53 +{ (* G, (H +H ′), bs ⊢ck switch xst [Ci do reset (xst1, xres1) =

⌊
tr i

⌋
Ci

every xres]
i end *)

201

C. A Semantic Preservation Proof

54 econstructor; intros.
55 - (* (H +H ′)(xst) ≡ π1(sts) *) ...
56 - (* G,whenCi (π1(sts)) (H +H ′, bs) ⊢ck reset (xst1, xres1) =

⌊
tr i

⌋
Ci

every xres*)
57 econstructor; intros.
58 + (* whenCi (π1(sts)) (H +H ′)(xres) ≡ whenCi (π1(sts)) (π2(sts)) *)
59 rewrite when_hist. (* figure 2.14c *)
60 ...
61 + (* G,maskk0 (whenCi (π1(sts)) (π2(sts))) (whenCi (π1(sts)) (H +H ′, bs)) ⊢ck ... *)
62 rewrite <- select_mask_when. (* lemma 2 *)
63 (* G, selectCi,k

0 sts (H +H ′, bs) ⊢ck (xst1, xres1) =
⌊
tr i

⌋
Ci

*)
64 repeat econstructor.
65 * (* selectCi,k

0 sts (H +H ′)(xst1) ≡ selectCi,k
0 sts (π1(sts1)) *)

66 rewrite select_hist. ...
67 * (* selectCi,k

0 sts (H +H ′)(xres1) ≡ selectCi,k
0 sts (π2(sts1)) *)

68 rewrite select_hist. ...
69 * (* G, selectCi,k

0 sts (H +H ′, bs) ⊢ck
⌊
tr i

⌋
Ci

⇓ [π1(sts1);π2(sts1)] *)
70 eapply trans_exp_sem.
71 ...
72 apply Htr.
73 }
74 +{ (* G, (H +H ′), bs ⊢ck switch xst1 [Ci do reset blks ′i every xres1]

i end *)
75 econstructor; intros.
76 - (* (H +H ′)(xst1) ≡ π1(sts1) *) ...
77 - (* G,whenCi (π1(sts1)) (H +H ′, bs) ⊢ck reset blks ′i every xres1*)
78 econstructor; intros.
79 + (* whenCi (π1(sts1)) (H +H ′)(xres1) ≡ whenCi (π1(sts1)) (π2(sts1)) *)
80 rewrite when_hist. ...
81 + rewrite <- select_mask_when.
82 (* G, selectCi,k

0 sts (H +H ′, bs) ⊢ck (xst1, xres1) =
⌊
blksi

⌋
*)

83 apply sem_block_refines. ...
84 (* G, selectCi,k

0 sts H, bs) ⊢ck (xst1, xres1) =
⌊
blksi

⌋
*)

85 apply Hind.
86 * (* G,Γty ⊢wt blksi *)
87 inversion Hwt. auto.
88 * (* G,Γ′

ck ⊢wc blksi *)
89 apply Hwcblks.
90 * (* dom(Γ′

ck) ⊆ dom(Γty) *)
91 intros. apply Hincl, Hincl’.
92 * (* NoDupLocals Γty blksi *)
93 inversion Hnd. auto.
94 * (* ∀x, x ∈ dom(Γty) =⇒ AtomOrGensym∅ x *)
95 apply Hat.
96 * (* GoodLocals∅ blksi *)
97 inversion Hgood. auto.
98 * (* G, selectCi,k

0 sts H, bs ⊢ck blksi *)
99 apply Hblk.

100 * (* dom(selectCi,k
0 sts H) ⊆ dom(Γty) *)

101 rewrite select_dom. apply Hdom.
102 * (* Γ′

ck , select
Ci,k
0 sts bs ⊢ck selectCi,k

0 sts H *)
103 apply select_sc_vars, Hsc.
104 }

Listing C.1: Proof of semantic correctness for compilation of state machines

202

Recall the compilation scheme presented in figure 4.6. Compiling a state machine with
strong transitions produces a scope var xst , xres , xst1 , xres1 : ck let eqfby;sw1;sw2 tel
where

• eqfby is (xst, xres) = (Cck, falseck) fby (xst1, xres1)

• sw1 is switch xst [Ci do reset (xst1, xres1) =
⌊
tr i

⌋
Ci

every xres]
i end

• sw2 is switch xst1 [Ci do reset blks ′i every xres1]
i end

To give a semantics to this scope, the proof must exhibit a local history H ′ such
that (i) H ′ has domain {xst , xres , xst1 , xres1}, (ii) H +H ′ is well-clocked, and (iii) history
H +H ′ gives a semantics to the new blocks.

We take H ′ = {xst 7→ π1(sts);xres 7→ π2(sts);xst1 7→ π1(sts1);xres1 7→ π2(sts1)},
where π1 and π2 are the projections from the state-and-reset stream to enumerated value
stream and boolean stream. We then show that H +H ′ refines H. This is not completely
trivial, because history concatenation + gives priority to the right operand, as defined in
figure 2.19b. If H and H ′ were in conflict, then H ′ would overwrite some values of H, and
the refinement would not hold. Using Hnin2, we prove that such a conflict never occurs.

The domain of H ′ is trivially correct (lines 23-24). Proving that H +H ′ is well-
clocked under the local environment (lines 25-35) requires proving that, for each
variable x associated with a clock ck ′ in the local environment, then the clock of the
stream associated with x is the interpretation of ck ′. We reason by case analysis on the
set of new identifiers. Since all new identifiers are declared with the clock type of the
state machine ck , we can prove that ck ′ = ck . By Hck, we know that ck evaluates to bs ′.
For instance, if x is xst , then its stream is π1(sts), which has the same clock as sts. By
Hac, this is indeed bs ′. The three other cases are similar.

The remaining obligations (lines 36-104) concern the semantics of the compiled
sub-blocks. The proof that eqfby has a semantics under H + H ′ is relatively simple.
It exploits the definition of H ′ to give a semantics to the variables xst , xres , etc. The
semantics of sampled constants is given using an auxiliary lemma add_whens_sem. Finally,
the fby semantics follow from the Hfby hypothesis.

Giving a semantics for the sw1 block (lines 53-73) requires a bit more work. First,
the stream associated to the switch condition is the one associated to the xst variable,
that is π1(sts). Then, the semantics of each branch must be given under a sampled history.
In particular, this requires giving a semantics to the reset condition by finding the value
of the xres variable in the sampled history. By definition, this is the sampling of the
π2(sts) stream, which is defined since π2(sts) has the same clock as π1(sts). Under the
reset block, the history and base clock are sampled by when and mask. Using lemma 2
(page 47) transforms this sampling into sampling by select, which moves the goal closer to
the source semantics. Then, we apply the constructor for equation semantics. Again, the
semantics of variables are given by sampling the sts1 stream. Finally, the semantics of
the compiled transitions is shown by the auxiliary lemma trans_exp_sem which proceeds
by induction over the list of transitions.

Finally, the proof must establish the semantics of the compiled sub-blocks under sw2

(lines 74-104). Again, the subgoal starts by showing the correspondence between the

203

C. A Semantic Preservation Proof

generated switch and reset blocks and the source select semantics. Then, the semantics
of a compiled block

⌊
blks i

⌋
must be given under sampled H, and not sampled H +H ′, to

stay consistent with the inductive hypotheses Hdom and Hat. The sem_block_refines
lemma states that, if a block has a semantics under a history H1, and a history H2 refines
H1, then the block has a semantics under H2. It can be applied because the select operator
preserves the refinement stated in Href. Then, we apply the induction hypothesis Hind.
It remains to prove all of the premises of invariant 11 for blks i. Typing, clock-typing,
NoDupLocals, GoodLocals and semantics obligations are proven using the original inverted
hypotheses. Since the new clock-typing environment is Γck , the Hincl hypothesis must be
proven again by combining the original Hincl with Hincl2. The obligation Hat is shown
immediately. The domain of the sampled history is still included in that of Γty , since
select may only reduce history. Finally, the select_sc_vars lemma shows that select
preserves the well-clocking of the history under a sampled environment. This concludes
the proof for this case.

Although we have shown the overall structure of the proof, this presentation still
omits some complex details: the case that we summarized requires around 300LoC in
Coq. In particular, we have treated the application of sampling to histories as a partial
function. In our actual Coq mechanization, it is specified as a relation, which complicates
the proofs somewhat by introducing new existential histories which the proof needs to
make “more concrete” to reason about. Unfortunately, we have not yet found the right
definitions to eliminate these painful details.

204

Bibliography

[13] Simulink: User’s Guide. R2013a. Release 2013a. The Mathworks. Natick,
MA, U.S.A., Mar. 2013.

[22] Stateflow User’s Guide. 10.7. Matlab & Simulink R2022b. The Mathworks.
Natick, MA, U.S.A., Sept. 2022.

[Abr+20] Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar, Magnus
O. Myreen, Michael Norrish, and Yong Kiam Tan. “Proof-Producing
Synthesis of CakeML from Monadic HOL Functions”. In: Journal of
Automated Reasoning (JAR) (June 2020). url: https://rdcu.be/b4FrU.

[Ana+17] Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou,
Randy Pollack, Olivier Savary Bélanger, Matthieu Sozeau, and Matthew
Z. Weaver. “CertiCoq : A verified compiler for Coq”. In: CoqPL’17: The
Third International Workshop on Coq for Programming Languages. Jan.
2017.

[And95] Charles André. SyncCharts: A Visual Representation of Reactive Be-
haviors. Technical Report. RR 95-52. Sophia-Antipolis, France: I3S, Oct.
1995. url: http://www-sop.inria.fr/members/Charles.Andre/CA%
20Publis/SYNCCHARTS/SyncCharts.pdf.

[App03] A. W. Appel. “Foundational Proof-Carrying Code”. In: Foundations of
Intrusion Tolerant Systems. Los Alamitos, CA, USA: IEEE Computer
Society, Dec. 2003, p. 25.

[Aug13] Cédric Auger. “Compilation certifiée de SCADE/LUSTRE”. PhD the-
sis. Orsay, France: Univ. Paris Sud 11, Apr. 2013. url: https://tel.
archives-ouvertes.fr/tel-00818169/document.

[Bal+10] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sain-
rat. “OTAWA: An Open Toolbox for Adaptive WCET Analysis”. In: 8th
IFIP WG 10.2 Int. Workshop on Software Technologies for Embedded and
Ubiquitous Systems (SEUS 2010). Vol. 6399. LNCS. Waidhofen an der

205

https://rdcu.be/b4FrU
http://www-sop.inria.fr/members/Charles.Andre/CA%20Publis/SYNCCHARTS/SyncCharts.pdf
http://www-sop.inria.fr/members/Charles.Andre/CA%20Publis/SYNCCHARTS/SyncCharts.pdf
https://tel.archives-ouvertes.fr/tel-00818169/document
https://tel.archives-ouvertes.fr/tel-00818169/document

Bibliography

Ybbs, Austria: Springer, Oct. 2010, pp. 35–46. url: https://hal.inria.
fr/hal-01055378/document.

[BB91] Albert Benveniste and Gérard Berry. “The Synchronous Approach to
Reactive and Real-Time Systems”. In: Proc. IEEE 79.9 (Sept. 1991),
pp. 1270–1282. url: https://ptolemy.berkeley.edu/projects/chess/
design/2010/discussions/Pdf/synclang.pdf.

[BC84] Gérard Berry and Laurent Cosserat. “The ESTEREL Synchronous Pro-
gramming Language and its Mathematical Semantics”. In: Seminar on
Concurrency. Ed. by Stephen D. Brookes, A. W. Roscoe, and Glynn
Winskel. Vol. 197. LNCS. Pittsburg, USA: Springer, July 1984, pp. 389–
448.

[Ber00] Gérard Berry. The Esterel v5 Language Primer. 5.91. Ecole des Mines and
INRIA. July 2000. url: http://www-sop.inria.fr/members/Gerard.
Berry/Papers/primer.zip.

[BH01] Sylvain Boulmé and Grégoire Hamon. “Certifying Synchrony for Free”.
In: Proc. 8th Int. Conf. on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR 2001). Ed. by Robert Nieuwenhuis and Andrei
Voronkov. Vol. 2250. LNCS. Havana, Cuba: Springer, Dec. 2001, pp. 495–
506. url: https://hal.archives-ouvertes.fr/hal-01571762.

[Bie+08] Dariusz Biernacki, Jean-Louis Colaço, Gregoire Hamon, and Marc Pouzet.
“Clock-directed modular code generation for synchronous data-flow lan-
guages”. In: Proc. 9th ACM SIGPLAN Conf. on Languages, Compilers,
and Tools for Embedded Systems (LCTES 2008). Tucson, AZ, USA: ACM
Press, June 2008, pp. 121–130. url: https://www.di.ens.fr/~pouzet/
bib/lctes08a.pdf.

[BJP22] Timothy Bourke, Paul Jeanmaire, and Marc Pouzet. “Towards a denota-
tional semantics of streams for a verified Lustre compiler (short talk)”. In:
28th International Conference on Types for Proofs and Programs. Nantes,
France, June 2022. url: https://types22.inria.fr/files/2022/06/
TYPES_2022_paper_28.pdf.

[BL09] Sandrine Blazy and Xavier Leroy. “Mechanized Semantics for the Clight
Subset of the C Language”. In: J. Automated Reasoning 43.3 (Oct. 2009),
pp. 263–288. url: https://hal.inria.fr/inria-00352524/document.

[Bou21] Sylvain Boulmé. “Formally Verified Defensive Programming (efficient Coq-
verified computations from untrusted ML oracles)”. See also http://www-
verimag.imag.fr/ boulme/hdr.html. Habilitation à diriger des recherches.
Université Grenoble-Alpes, Sept. 2021. url: https://hal.science/tel-
03356701.

[Bru20] Lélio Brun. “Mechanized Semantics and Verified Compilation for a Dataflow
Synchronous Language with Reset”. PhD thesis. PSL Research University,
June 2020. url: https://tel.archives-ouvertes.fr/tel-03068862.

206

https://hal.inria.fr/hal-01055378/document
https://hal.inria.fr/hal-01055378/document
https://ptolemy.berkeley.edu/projects/chess/design/2010/discussions/Pdf/synclang.pdf
https://ptolemy.berkeley.edu/projects/chess/design/2010/discussions/Pdf/synclang.pdf
http://www-sop.inria.fr/members/Gerard.Berry/Papers/primer.zip
http://www-sop.inria.fr/members/Gerard.Berry/Papers/primer.zip
https://hal.archives-ouvertes.fr/hal-01571762
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://www.di.ens.fr/~pouzet/bib/lctes08a.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_28.pdf
https://types22.inria.fr/files/2022/06/TYPES_2022_paper_28.pdf
https://hal.inria.fr/inria-00352524/document
https://hal.science/tel-03356701
https://hal.science/tel-03356701
https://tel.archives-ouvertes.fr/tel-03068862

Bibliography

[Cas+87] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John A. Plaice. “LUS-
TRE: A declarative language for programming synchronous systems”.
In: Proc. 14th ACM SIGPLAN-SIGACT Symp. Principles of Program-
ming Languages (POPL 1987). Munich, Germany: ACM Press, Jan. 1987,
pp. 178–188. doi: 10.1145/41625.41641. url: https://www.cse.unsw.
edu.au/~plaice/archive/JAP/P-ACM_POPL87-lustre.pdf.

[CFS07] Sylvain Conchon, Jean-Christophe Filliâtre, and Julien Signoles. “Design-
ing a Generic Graph Library Using ML Functors”. In: Symposium on
Trends in Functional Programming. 2007.

[Cha20] Arthur Charguéraud. “Separation Logic for Sequential Programs (Func-
tional Pearl)”. In: Proc. ACM Program. Lang. 4.ICFP (Aug. 2020). doi:
10.1145/3408998. url: https://doi.org/10.1145/3408998.

[CHP06] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. “Mixing Signals
and Modes in Synchronous Data-flow Systems”. In: Proc. 6th ACM Int.
Conf. on Embedded Software (EMSOFT 2006). Ed. by Sang Lyul Min and
Yi Wang. Seoul, South Korea: ACM Press, Oct. 2006, pp. 73–82. url:
https://www.di.ens.fr/~pouzet/bib/emsoft06.pdf.

[Col+23] J.-L. Colaço, M. Mendler, B. Pauget, and M. Pouzet. “A Constructive
State-based Semantics and Interpreter for a Synchronous Data-flow Lan-
guage with State Machines”. In: ACM TECS same issue (2023).

[CompCert] Xavier Leroy. CompCert. https://github.com/AbsInt/CompCert. 2023.

[Coq] Coq Development Team. The Coq proof assistant reference manual. Inria.
2020. url: https://coq.inria.fr/distrib/current/refman/.

[CP01] Pascal Cuoq and Marc Pouzet. “Modular Causality in a Synchronous
Stream Language”. In: 10th European Symposium on Programming (ESOP
2001), part of European Joint Conferences on Theory and Practice of
Software (ETAPS 2001). Ed. by David Sands. Vol. 2028. LNCS. Genova,
Italy: Springer, Apr. 2001, pp. 237–251. doi: 10.1007/3-540-45309-
1_16.

[CP03] Jean-Louis Colaço and Marc Pouzet. “Clocks as First Class Abstract
Types”. In: Proc. 3rd Int. Conf. on Embedded Software (EMSOFT 2003).
Ed. by R. Alur and I. Lee. Vol. 2855. LNCS. Philadelphia, PA, USA:
Springer, Oct. 2003, pp. 134–155. doi: 10.1007/978-3-540-45212-6_10.

[CP04] Jean-Louis Colaço and Marc Pouzet. “Type-based initialization analysis of
a synchronous dataflow language”. In: Int. J. Software Tools for Technology
Transfer 6.3 (Aug. 2004), pp. 245–255. url: https://www.di.ens.fr/
~pouzet/bib/sttt04.pdf.

207

https://doi.org/10.1145/41625.41641
https://www.cse.unsw.edu.au/~plaice/archive/JAP/P-ACM_POPL87-lustre.pdf
https://www.cse.unsw.edu.au/~plaice/archive/JAP/P-ACM_POPL87-lustre.pdf
https://doi.org/10.1145/3408998
https://doi.org/10.1145/3408998
https://www.di.ens.fr/~pouzet/bib/emsoft06.pdf
https://github.com/AbsInt/CompCert
https://coq.inria.fr/distrib/current/refman/
https://doi.org/10.1007/3-540-45309-1_16
https://doi.org/10.1007/3-540-45309-1_16
https://doi.org/10.1007/978-3-540-45212-6_10
https://www.di.ens.fr/~pouzet/bib/sttt04.pdf
https://www.di.ens.fr/~pouzet/bib/sttt04.pdf

Bibliography

[CP96] Paul Caspi and Marc Pouzet. “Synchronous Kahn Networks”. In: Proceed-
ings of the First ACM SIGPLAN International Conference on Functional
Programming. ICFP ’96. Philadelphia, Pennsylvania, USA: Association
for Computing Machinery, 1996, pp. 226–238. isbn: 0897917707. doi:
10.1145/232627.232651. url: https://doi.org/10.1145/232627.
232651.

[CP98] Paul Caspi and Marc Pouzet. “A Co-iterative Characterization of Syn-
chronous Stream Functions”. In: First Workshop on Coalgebraic Methods in
Computer Science (CMCS’98). Vol. 11. ENTCS. Lisbon, Portugal: Elsevier
Science, Mar. 1998, pp. 1–21. doi: 10.1016/S1571-0661(04)00050-7.

[CPP05] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. “A Conservative
Extension of Synchronous Data-flow with State Machines”. In: Proc.
5th ACM Int. Conf. on Embedded Software (EMSOFT 2005). Ed. by
Wayne Wolf. Jersey City, USA: ACM Press, Sept. 2005, pp. 173–182. doi:
10.1145/1086228.1086261. url: https://www.di.ens.fr/~pouzet/
bib/emsoft05b.pdf.

[CPP17] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. “Scade 6: A Formal
Language for Embedded Critical Software Development”. In: Proc. 11th
Int. Symp. Theoretical Aspects of Software Engineering (TASE 2017).
Nice, France: IEEE Computer Society, Sept. 2017, pp. 4–15. url: https:
//hal.inria.fr/hal-01666470/document.

[CPP23] Jean-Louis Colaço, Baptiste Pauget, and Marc Pouzet. “Polymorphic
Types with Polynomial Sizes”. In: Proceedings of the 9th ACM SIGPLAN
International Workshop on Libraries, Languages and Compilers for Array
Programming. ARRAY 2023. Orlando, FL, USA: Association for Com-
puting Machinery, 2023, pp. 36–49. isbn: 9798400701696. doi: 10.1145/
3589246.3595372. url: https://doi.org/10.1145/3589246.3595372.

[Dev17] Heptagon Developers. Heptagon/BZR manual. Apr. 2017. url: http:
//heptagon.gforge.inria.fr/pub/heptagon-manual.pdf.

[ELS93] Peter Eades, Xuemin Lin, and W.F. Smyth. “A fast and effective heuristic
for the feedback arc set problem”. In: Information Processing Letters
47.6 (1993), pp. 319–323. issn: 0020-0190. doi: https://doi.org/10.
1016/0020-0190(93)90079-O. url: https://www.sciencedirect.com/
science/article/pii/002001909390079O.

[EMSOFT21] Timothy Bourke, Paul Jeanmaire, Basile Pesin, and Marc Pouzet. “Verified
Lustre Normalization with Node Subsampling”. In: ACM Trans. Embedded
Computing Systems. International Conference on Embedded Software 20.5s
(Oct. 2021), Article 98. issn: 1539-9087. doi: 10.1145/3477041.

208

https://doi.org/10.1145/232627.232651
https://doi.org/10.1145/232627.232651
https://doi.org/10.1145/232627.232651
https://doi.org/10.1016/S1571-0661(04)00050-7
https://doi.org/10.1145/1086228.1086261
https://www.di.ens.fr/~pouzet/bib/emsoft05b.pdf
https://www.di.ens.fr/~pouzet/bib/emsoft05b.pdf
https://hal.inria.fr/hal-01666470/document
https://hal.inria.fr/hal-01666470/document
https://doi.org/10.1145/3589246.3595372
https://doi.org/10.1145/3589246.3595372
https://doi.org/10.1145/3589246.3595372
http://heptagon.gforge.inria.fr/pub/heptagon-manual.pdf
http://heptagon.gforge.inria.fr/pub/heptagon-manual.pdf
https://doi.org/https://doi.org/10.1016/0020-0190(93)90079-O
https://doi.org/https://doi.org/10.1016/0020-0190(93)90079-O
https://www.sciencedirect.com/science/article/pii/002001909390079O
https://www.sciencedirect.com/science/article/pii/002001909390079O
https://doi.org/10.1145/3477041

Bibliography

[EMSOFT23] Timothy Bourke, Basile Pesin, and Marc Pouzet. “Verified Compilation
of Synchronous Dataflow with State Machines”. In: ACM Transactions
on Embedded Computing Systems, special issue for EMSOFT 2023. Inter-
national Conference on Embedded Software. Oct. 2023.

[GC04] Eduardo Giménez and Pierre Castéran. A Tutorial on (Co-)Inductive
Types in Coq. 2004. url: https://hal.science/hal-00344325.

[Gér+12] Léonard Gérard, Adrien Guatto, Cédric Pasteur, and Marc Pouzet. “A
modular memory optimization for synchronous data-flow languages: ap-
plication to arrays in a Lustre compiler”. In: Proc. 13th ACM SIGPLAN
Conf. on Languages, Compilers, and Tools for Embedded Systems (LCTES
2012). Ed. by Reinhard Wilhelm, Heiko Falk, and Wang Yi. Beijing,
China: ACM Press, June 2012, pp. 51–60. url: https://www.di.ens.
fr/~guatto/papers/lctes12.pdf.

[GTL03] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. “Poly-
chrony for system design”. In: J. Circuits, Systems and Computers 12.3
(2003), pp. 261–303. url: http://www.worldscinet.com/123/12/1203/
S0218126603000763.html.

[Hal+91] Nicolas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. “The
synchronous dataflow programming language LUSTRE”. In: Proc. IEEE
79.9 (Sept. 1991), pp. 1305–1320. url: http://www-verimag.imag.fr/
~halbwach/lustre-ieee.html.

[Ham05] Grégoire Hamon. “A Denotational Semantics for Stateflow”. In: Proc.
5th ACM Int. Conf. on Embedded Software (EMSOFT 2005). Ed. by
Wayne Wolf. Jersey City, USA: ACM Press, Sept. 2005, pp. 164–172. doi:
10.1145/1086228.1086260.

[Har+87] D. Harel, A. Pnuelli, J.P. Schmidt, and R. Sherman. “On the Formal
Semantics of Statecharts”. In: 2nd IEEE Symposium on Logic in Computer
Science. 1987.

[Har87] David Harel. “Statecharts: A Visual Formalism for Complex Systems”. In:
Science of Computer Programming 8.3 (June 1987), pp. 231–274. doi:
10.1016/0167-6423(87)90035-9. url: http://www.inf.ed.ac.uk/
teaching/courses/seoc/2005_2006/resources/statecharts.pdf.

[HN96] David Harel and Amnon Naamad. “The STATEMATE Semantics of
Statecharts”. In: ACM Trans. Software Engineering and Methodology
(TOSEM) 5.4 (Oct. 1996), pp. 293–333. doi: 10.1145/235321.235322.

[HP00] Gégoire Hamon and Marc Pouzet. “Modular Resetting of Synchronous
Data-Flow Programs”. In: Proc. 2nd ACM SIGPLAN Int. Conf. on Prin-
ciples and Practice of Declarative Programming (PPDP 2000). Ed. by
Frank Pfenning. Montreal, Canada: ACM, Sept. 2000, pp. 289–300. doi:
10.1145/351268.351300. url: https://www.di.ens.fr/~pouzet/bib/
ppdp00.ps.gz.

209

https://hal.science/hal-00344325
https://www.di.ens.fr/~guatto/papers/lctes12.pdf
https://www.di.ens.fr/~guatto/papers/lctes12.pdf
http://www.worldscinet.com/123/12/1203/S0218126603000763.html
http://www.worldscinet.com/123/12/1203/S0218126603000763.html
http://www-verimag.imag.fr/~halbwach/lustre-ieee.html
http://www-verimag.imag.fr/~halbwach/lustre-ieee.html
https://doi.org/10.1145/1086228.1086260
https://doi.org/10.1016/0167-6423(87)90035-9
http://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf
http://www.inf.ed.ac.uk/teaching/courses/seoc/2005_2006/resources/statecharts.pdf
https://doi.org/10.1145/235321.235322
https://doi.org/10.1145/351268.351300
https://www.di.ens.fr/~pouzet/bib/ppdp00.ps.gz
https://www.di.ens.fr/~pouzet/bib/ppdp00.ps.gz

Bibliography

[HR04] Grégoire Hamon and John Rushby. “An Operational Semantics for State-
flow”. In: Proc. 7th Int. Conf. on Fundamental Approaches to Software
Engineering (FASE’04). Ed. by M. Wermelinger and T. Margaria-Steffen.
Vol. 2984. LNCS. Barcelona, Spain: Springer, Apr. 2004, pp. 229–243.
url: http://www.csl.sri.com/users/rushby/papers/sttt07.pdf.

[HSCC14] Albert Benveniste, Timothy Bourke, Benoit Caillaud, Bruno Pagano,
and Marc Pouzet. “A Type-Based Analysis of Causality Loops in Hybrid
Modelers”. In: Proc. 17th Int. Conf. on Hybrid Systems: Computation
and Control (HSCC 2014). Ed. by Martin Fränzle and John Lygeros.
Berlin, Germany: ACM Press, Apr. 2014, pp. 71–82. doi: 10.1145/
2562059.2562125. url: http://www.tbrk.org/papers/abstracts.
html#hscc14.

[Jea19] Paul Jeanmaire. Propriétés dynamiques du système d’horloges de Lustre.
Master’s thesis. 2019.

[JFLA21] Timothy Bourke, Paul Jeanmaire, Basile Pesin, and Marc Pouzet. “Normal-
isation vérifiée du langage Lustre”. In: Journées Francophones des Langages
Applicatifs (Apr. 2021). url: https://hal.archives-ouvertes.fr/hal-
03190426.

[JFLA23] Timothy Bourke, Basile Pesin, and Marc Pouzet. “Analyse de dépendance
vérifiée pour un langage synchrone à flot de données”. In: Journées Fran-
cophones des Langages Applicatifs (Jan. 2023). Ed. by Timothy Bourke
and Delphine Demange, pp. 101–120. url: https://hal.inria.fr/hal-
03936656.

[JPL12] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. “Validating
LR(1) parsers”. In: 21st European Symposium on Programming (ESOP
2012), part of European Joint Conferences on Theory and Practice of
Software (ETAPS 2012). Ed. by Helmut Seidl. Vol. 7211. LNCS. Tallinn,
Estonia: Springer, Mar. 2012, pp. 397–416. url: https://hal.inria.
fr/hal-01077321/document.

[Kah74] Gilles Kahn. “The Semantics of a Simple Language for Parallel Pro-
gramming”. In: Proc. Int. Federation for Information Processing (IFIP)
Congress 1974. Ed. by Jack L. Rosenfeld. Stockholm, Sweden: North-
Holland, Aug. 1974, pp. 471–475. url: https://perso.ensta-paristech.
fr/~chapoutot/various/kahn_networks.pdf.

[Kum+14] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens.
“CakeML: A Verified Implementation of ML”. In: Proc. 41st ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages (POPL 2014). San
Diego, CA, USA: ACM Press, Jan. 2014, pp. 179–191. url: https :
//cakeml.org/popl14.pdf.

210

http://www.csl.sri.com/users/rushby/papers/sttt07.pdf
https://doi.org/10.1145/2562059.2562125
https://doi.org/10.1145/2562059.2562125
http://www.tbrk.org/papers/abstracts.html#hscc14
http://www.tbrk.org/papers/abstracts.html#hscc14
https://hal.archives-ouvertes.fr/hal-03190426
https://hal.archives-ouvertes.fr/hal-03190426
https://hal.inria.fr/hal-03936656
https://hal.inria.fr/hal-03936656
https://hal.inria.fr/hal-01077321/document
https://hal.inria.fr/hal-01077321/document
https://perso.ensta-paristech.fr/~chapoutot/various/kahn_networks.pdf
https://perso.ensta-paristech.fr/~chapoutot/various/kahn_networks.pdf
https://cakeml.org/popl14.pdf
https://cakeml.org/popl14.pdf

Bibliography

[LCTES11] Albert Benveniste, Timothy Bourke, Benoît Caillaud, and Marc Pouzet.
“Divide and Recycle: Types and Compilation for a Hybrid Synchronous
Language”. In: Proc. 12th ACM SIGPLAN Conf. on Languages, Compilers,
and Tools for Embedded Systems (LCTES 2011). Ed. by Jan Vitek and
Bjorn De Sutter. Chicago, USA: ACM Press, Apr. 2011, pp. 61–70. doi:
10.1145/1967677.1967687. url: http://www.tbrk.org/papers/
abstracts.html#lctes11.

[LeG+91] Paul Le Guernic, Thierry Gautier, Michel Le Borgne, and Claude Le Maire.
“Programming Real-Time Applications with Signal”. In: Proc. IEEE 79.9
(Sept. 1991), pp. 1321–1336. url: https://hal.inria.fr/inria-
00540460/document.

[Ler09a] Xavier Leroy. “A formally verified compiler back-end”. In: J. Automated
Reasoning 43.4 (Dec. 2009), pp. 363–446. url: http://gallium.inria.
fr/~xleroy/publi/compcert-backend.pdf.

[Ler09b] Xavier Leroy. “Formal verification of a realistic compiler”. In: Comms.
ACM 52.7 (2009), pp. 107–115. url: https://hal.inria.fr/inria-
00415861/document.

[LG09] Xavier Leroy and Hervé Grall. “Coinductive big-step operational seman-
tics”. In: Information and Computation 207.2 (2009), pp. 284–304. url:
http://xavierleroy.org/publi/coindsem-journal.pdf.

[Mor07] Lionel Morel. “Array Iterators in Lustre: From a Language Extension
to Its Exploitation in Validation”. In: EURASIP Journal on Embedded
Systems (2007), p. 59130. url: https://hal.science/hal-00292876.

[MR01] Florence Maraninchi and Yann Rémond. “Argos: an automaton-based
synchronous language”. In: Computer Languages 27.1–3 (2001), pp. 61–92.
url: https://hal.archives-ouvertes.fr/hal-00273055/document.

[MR03] Florence Maraninchi and Yann Rémond. “Mode-Automata: a new Domain-
Specific Construct for the Development of Safe Critical Systems”. In:
Science of Computer Programming 46.3 (2003), pp. 219–254. doi: 10.
1016/S0167-6423(02)00093-X.

[MR98] F. Maraninchi and Y. Rémond. “Mode-Automata: About Modes and States
for Reactive Systems”. In: 7th European Symposium on Programming
(ESOP 1998), part of European Joint Conferences on Theory and Practice
of Software (ETAPS 1998). Vol. 1381. LNCS. Lisbon, Portugal: Springer,
Mar. 1998, pp. 185–189. doi: 10.1007/BFb0053571.

[Nec97] George C. Necula. “Proof-carrying code”. In: ACM-SIGACT Symposium
on Principles of Programming Languages. 1997.

[Nig22] Pierre Nigron. “Programmes avec effets et leurs preuves dans la théorie
des types : application à la compilation certifiée et aux traitements de
paquets certifiés”. Theses. Sorbonne Université, Nov. 2022. url: https:
//theses.hal.science/tel-04028224.

211

https://doi.org/10.1145/1967677.1967687
http://www.tbrk.org/papers/abstracts.html#lctes11
http://www.tbrk.org/papers/abstracts.html#lctes11
https://hal.inria.fr/inria-00540460/document
https://hal.inria.fr/inria-00540460/document
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
http://gallium.inria.fr/~xleroy/publi/compcert-backend.pdf
https://hal.inria.fr/inria-00415861/document
https://hal.inria.fr/inria-00415861/document
http://xavierleroy.org/publi/coindsem-journal.pdf
https://hal.science/hal-00292876
https://hal.archives-ouvertes.fr/hal-00273055/document
https://doi.org/10.1016/S0167-6423(02)00093-X
https://doi.org/10.1016/S0167-6423(02)00093-X
https://doi.org/10.1007/BFb0053571
https://theses.hal.science/tel-04028224
https://theses.hal.science/tel-04028224

Bibliography

[Owe+16] Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam Tan.
“Functional Big-Step Semantics”. In: Programming Languages and Systems.
Ed. by Peter Thiemann. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 589–615. isbn: 978-3-662-49498-1.

[Pau08] Lawrence C. Paulson. The Isabelle Reference Manual. Uni. of Cambridge.
June 2008.

[Pau09] Christine Paulin-Mohring. “A constructive denotational semantics for
Kahn networks in Coq”. In: From Semantics to Computer Science: Essays
in Honour of Gilles Kahn. Ed. by Yves Bertot, Gérard Huet, Jean-Jacques
Lévy, and Gordon Plotkin. Cambridge, UK: CUP, 2009, pp. 383–413.
url: https://hal.inria.fr/inria-00431806/document.

[Pes20] Basile Pesin. Normalisation du langage Lustre dans l’assistant de preuve
Coq. Master’s thesis. 2020.

[PLDI17] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc
Pouzet, and Lionel Rieg. “A Formally Verified Compiler for Lustre”. In:
Proc. 2017 ACM SIGPLAN Conf. on Programming Language Design
and Implementation (PLDI). Barcelona, Spain: ACM Press, June 2017,
pp. 586–601. doi: 10.1145/3062341.3062358. url: http://www.tbrk.
org/papers/abstracts.html#pldi2017.

[POPL20] Timothy Bourke, Lélio Brun, and Marc Pouzet. “Mechanized Semantics
and Verified Compilation for a Dataflow Synchronous Language with
Reset”. In: Proc. of the ACM on Programming Languages 4.POPL (Jan.
2020), pp. 1–29. doi: 10.1145/3371112. url: http://www.tbrk.org/
papers/abstracts.html#popl2020.

[Pot15] François Pottier. “Depth-First Search and Strong Connectivity in Coq”.
In: Journées Francophones des Langages Applicatifs (JFLA). Jan. 2015.
url: http://cambium.inria.fr/~fpottier/publis/fpottier-dfs-
scc.pdf.

[Pou06] Marc Pouzet. Lucid Synchrone, v. 3. Tutorial and reference manual.
Université Paris-Sud. Apr. 2006. url: https://www.di.ens.fr/~pouzet/
lucid-synchrone/lucid-synchrone-3.0-manual.pdf.

[Pou10] Marc Pouzet. Zélus. https://github.com/INRIA/zelus. 2010.

[PR09] Marc Pouzet and Pascal Raymond. “Modular Static Scheduling of Syn-
chronous Data-flow Networks: An efficient symbolic representation”. In:
Proc. 9th ACM Int. Conf. on Embedded Software (EMSOFT 2009). Greno-
ble, France: ACM Press, Oct. 2009, pp. 215–224. url: https://www.di.
ens.fr/~pouzet/bib/emsoft09.pdf.

[PR16] François Pottier and Yann Régis-Gianas. Menhir Reference Manual. Inria.
Aug. 2016. url: https://gallium.inria.fr/~fpottier/menhir/
manual.pdf.

212

https://hal.inria.fr/inria-00431806/document
https://doi.org/10.1145/3062341.3062358
http://www.tbrk.org/papers/abstracts.html#pldi2017
http://www.tbrk.org/papers/abstracts.html#pldi2017
https://doi.org/10.1145/3371112
http://www.tbrk.org/papers/abstracts.html#popl2020
http://www.tbrk.org/papers/abstracts.html#popl2020
http://cambium.inria.fr/~fpottier/publis/fpottier-dfs-scc.pdf
http://cambium.inria.fr/~fpottier/publis/fpottier-dfs-scc.pdf
https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
https://www.di.ens.fr/~pouzet/lucid-synchrone/lucid-synchrone-3.0-manual.pdf
https://github.com/INRIA/zelus
https://www.di.ens.fr/~pouzet/bib/emsoft09.pdf
https://www.di.ens.fr/~pouzet/bib/emsoft09.pdf
https://gallium.inria.fr/~fpottier/menhir/manual.pdf
https://gallium.inria.fr/~fpottier/menhir/manual.pdf

Bibliography

[PSS98a] Amir Pnueli, M. Siegel, and Ofer Shtrichman. “Translation Validation
for Synchronous Languages”. In: Proc. 25th Int. Colloq. on Automata,
Languages and Programming. Ed. by Kim Guldstrand Larsen, Sven Skyum,
and Glynn Winskel. Vol. 1443. LNCS. Springer, 1998, pp. 235–246. doi:
10.1007/BFb0055057.

[PSS98b] Amir Pnueli, Michael Siegel, and Eli Singerman. “Translation Validation”.
In: International Conference on Tools and Algorithms for Construction
and Analysis of Systems. 1998.

[RB22] Lionel Rieg and Gérard Berry. Towards Coq-verified Esterel Semantics
and Compiling. arXiv. Sept. 2022. doi: 10.48550/ARXIV.1909.12582.
arXiv: 1909.12582v3 [cs.FL].

[RL10] Silvain Rideau and Xavier Leroy. “Validating register allocation and
spilling”. In: Compiler Construction (CC 2010). Vol. 6011. Lecture Notes in
Computer Science. Springer, 2010, pp. 224–243. url: http://xavierleroy.
org/publi/validation-regalloc.pdf.

[Sew+07] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strniša. “Ott: Effective Tool
Support for the Working Semanticist”. In: Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming. ICFP
’07. Freiburg, Germany: Association for Computing Machinery, 2007,
pp. 1–12. isbn: 9781595938152. doi: 10.1145/1291151.1291155. url:
https://doi.org/10.1145/1291151.1291155.

[Shi+17] Gang Shi, Yuanke Gan, Shu Shang, Shengyuan Wang, Yuan Dong, and
Pen-Chung Yew. “A Formally Verified Sequentializer for Lustre-Like Con-
current Synchronous Data-Flow Programs”. In: Proc. 39th Int. Conf. on
Software Engineering Companion (ICSE-C’17). Buenos Aires, Argentina:
IEEE Press, May 2017, pp. 109–111. doi: 10.1109/ICSE-C.2017.83.

[Shi+19] Gang Shi, Yucheng Zhang, Shu Shang, Shengyuan Wang, Yuan Dong, and
Pen-Chung Yew. “A formally verified transformation to unify multiple
nested clocks for a Lustre-like language”. In: Science China Information
Sciences 62.1 (Jan. 2019), article 12801. doi: 10.1007/s11432-016-9270-
0.

[SN08] Konrad Slind and Michael Norrish. “A Brief Overview of HOL4”. In: Proc.
21st Int. Conf. on Theorem Proving in Higher Order Logics (TPHOLs
2008). Ed. by Otmane Aït Mohamed, César A. Muñoz, and Sofiène Tahar.
Vol. 5170. LNCS. Montreal, Canada: Springer, Aug. 2008, pp. 28–32. url:
https://ts.data61.csiro.au/publications/nicta_full_text/1482.
pdf.

[Soz07] Matthieu Sozeau. “Subset Coercions in Coq”. In: Lecture Notes in Com-
puter Science 4502 (2007), pp. 237–252. doi: 10.1007/978-3-540-74464-
1_16. url: https://hal.inria.fr/inria-00628869.

213

https://doi.org/10.1007/BFb0055057
https://doi.org/10.48550/ARXIV.1909.12582
https://arxiv.org/abs/1909.12582v3
http://xavierleroy.org/publi/validation-regalloc.pdf
http://xavierleroy.org/publi/validation-regalloc.pdf
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1109/ICSE-C.2017.83
https://doi.org/10.1007/s11432-016-9270-0
https://doi.org/10.1007/s11432-016-9270-0
https://ts.data61.csiro.au/publications/nicta_full_text/1482.pdf
https://ts.data61.csiro.au/publications/nicta_full_text/1482.pdf
https://doi.org/10.1007/978-3-540-74464-1_16
https://doi.org/10.1007/978-3-540-74464-1_16
https://hal.inria.fr/inria-00628869

Bibliography

[Str02] Martin Strecker. “Formal Verification of a Java Compiler in Isabelle”. In:
CADE. 2002.

[Tan+16] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox,
Scott Owens, and Michael Norrish. “A New Verified Compiler Backend
for CakeML”. In: Proc. 21st ACM SIGPLAN Int. Conf. on Functional
Programming (ICFP 2016). Nara, Japan: ACM Press, Sept. 2016, pp. 60–
73. url: https://cakeml.org/icfp16.pdf.

[Tan+19] Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J.
Fox, Scott Owens, and Michael Norrish. “The verified CakeML compiler
backend”. In: Journal of Functional Programming 29 (2019).

[Tec05] Esterel Technologies. The Esterel v7 Reference Manual. v7_30. Esterel
Technologies. Villeneuve-Loubet, France, Nov. 2005.

[VB14] Jérôme Vouillon and Vincent Balat. “From Bytecode to JavaScript: the
Js_of_ocaml Compiler”. In: Software: Practice and Experience 44 (Aug.
2014). doi: 10.1002/spe.2187.

[Wad92] Philip Wadler. “Monads for functional programming”. In: Program Design
Calculi, Proceedings of the NATO Advanced Study Institute on Program
Design Calculi, Marktoberdorf, Germany, July 28 - August 9, 1992. Ed. by
Manfred Broy. Vol. 118. NATO ASI Series. Springer, 1992, pp. 233–
264. url: https : / / homepages . inf . ed . ac . uk / wadler / papers /
marktoberdorf/baastad.pdf.

[Yan+11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and
Understanding Bugs in C Compilers”. In: Proc. 2011 ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI).
San Jose, CA, USA: ACM Press, June 2011, pp. 283–294. url: https:
//www.flux.utah.edu/paper/yang-pldi11.

214

https://cakeml.org/icfp16.pdf
https://doi.org/10.1002/spe.2187
https://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://homepages.inf.ed.ac.uk/wadler/papers/marktoberdorf/baastad.pdf
https://www.flux.utah.edu/paper/yang-pldi11
https://www.flux.utah.edu/paper/yang-pldi11

Index

clock-type system 90
clock . 36
lustre . 182
merge . 34
reset . 44
switch . 41
when . 34
constant 34
equation 38
node . 36
node instantiation 38
operator 34
variable . 34

compilation
fby normalization 138
last normalization 106
switch block 100, 135
back-end . 166
completion . 94
cutting update cycles 154
elaboration 10, 86
generating identifiers 80, 115
local declaration 102
nlustre to stc 148
parsing . 10, 79
scheduling 153, 158, 167
state machine 98
stc to obc 151, 152, 159, 165
transcription 130
unnesting . 105

graph analysis 78, 136, 157
AcyGraph . 64

optimizations
dataflow . 134

constant propagation 141
dead equation elimination . 135
inlining 140
minimization 138, 142

imperative 121
dead code elimination 122
fusion of conditionals . 121, 162

semantics
clock . 75
history . 28, 97
lustre . 29
fby . 34
last . 46
merge . 32
reset 43, 44, 130
switch . 40
when 32, 40
clock correctness 74
clocked semantics 95, 97
constant . 31
determinism 73
equation 29
initialization arrow 35
local declaration 45, 97

215

Index

node . 29, 97
node instantiation 35, 97
operator . 31
state machine 48, 49
variable . 29

nlustre
fbyreset 129
holdreset 129
mfbyreset 128
reset-ind 126
coinductive model 124, 130
indexed model 126
memory model 127, 149

obc . 120
stc . 145, 149

initialization 146
iterated semantics 148
transition constraint 147

streams . 23
coinductive 25, 52, 124

EqSt . 26
Str_nth . 26
init_from 26
map . 26

indexed 24, 126

216

MOTS CLÉS

langages synchrones à flots de données, Lustre, Scade, compilation vérifiée, machines à états, Vélus, Coq

RÉSUMÉ

Les systèmes embarqués critiques sont souvent spécifiés par des formalismes schéma-bloc. SCADE Suite est un envi-
ronnement de développement pour ces systèmes utilisé depuis vingt ans dans l’industrie avionique, nucléaire, automobile,
et autres domaines critiques. Son formalisme graphique se traduit en une représentation textuelle basée sur le langage
synchrone à flots de données Lustre, et incorpore des fonctionnalités de langages plus récents comme Lucid Synchrone.
En Lustre, un programme est défini comme un ensemble d’équations qui spécifie la relation entre entrées et sorties du
programme à chaque instant. Le langage des expressions inclut des opérateurs arithmétiques et logiques, des opéra-
teurs de délais qui permettent d’accéder à la précédente valeur d’une expression, et des opérateurs d’échantillonnage
qui permettent à certaines valeurs d’être calculées moins souvent que d’autres.
Le projet Vélus est une formalisation d’un sous-ensemble du langage Scade 6 dans l’assistant de preuves Coq. Il
propose une formalisation de la sémantique dynamique du langage sous forme de relations entre flots infinis d’entrées
et de sorties. Il inclut aussi un compilateur qui utilise CompCert, un compilateur vérifié pour C, pour produire du code
assembleur. Enfin, il fournit une preuve de bout-en-bout que ce compilateur préserve la sémantique à flots de données
des programmes sources.
Cette thèse étends Vélus en y ajoutant les blocs de contrôles de Scade 6 et Lucid Synchrone, ce qui inclut une construc-
tion qui contrôle l’activation des équations selon une condition (switch), une construction permettant d’accéder à la valeur
précédente d’une variable (last), une construction qui réinitialise les opérateurs de délai (reset), et, enfin, des machines
à états hiérarchiques, qui permettent la spécification de comportements modaux complexes. Toutes ces constructions
peuvent être arbitrairement imbriquées dans un programme. Nous étendons la sémantique de Vélus avec une nouvelle
spécification pour ces constructions qui encode leur comportement par l’échantillonnage. Nous proposons un schéma
d’induction générique pour les programmes bien formés qui permet de prouver certaines propriétés du modèle séman-
tique, comme son déterminisme ou l’adhérence des valeurs aux types déclarés. Enfin, nous décrivons la compilation
de ces constructions telle qu’implémentée dans Vélus. Nous montrons que le modèle de compilation qui réécrit ces
constructions dans le langage noyau peut être implémenté, spécifié et vérifié dans Coq. La compilation de last et reset
nécessite des changements plus profonds dans les langages intermédiaires de Vélus.

ABSTRACT

Safety-critical embedded systems are often specified using block-diagram formalisms. SCADE Suite is a development
environment for such systems which has been used industrially in avionics, nuclear plants, automotive and other safety-
critical contexts for twenty years. Its graphical formalism translates to a textual representation based on the Lustre
synchronous dataflow language, with extensions from later languages like Lucid Synchrone. In Lustre, a program is
defined as a set of equations that relate inputs and outputs of the program at each discrete time step. The language of
expressions at right of equations includes arithmetic and logic operators, delay operators that access the previous value
of an expression, and sampling operators that allow some values to be calculated less often than others.
The Vélus project aims at formalizing a subset of the Scade 6 language in the Coq Proof Assistant. It proposes a
specification of the dynamic semantics of the language as a relation between infinite streams of inputs and outputs. It
also includes a compiler that uses CompCert, a verified compiler for C, as its back end to produce assembly code, and
an end-to-end proof that compilation preserves the semantics of dataflow programs.
In this thesis, we extend Vélus to support control blocks present in Scade 6 and Lucid Synchrone, which includes a
construction that controls the activation of equations based on a condition (switch), a construction that accesses the
previous value of a named variable (last), a construction that re-initializes delay operators (reset), and finally, hierarchical
state machines, which allow for the definition of complex modal behaviors. All of these constructions may be arbitrarily
nested in a program. We extend the existing semantics of Vélus with a novel specification for these constructs that
encodes their behavior using sampling. We propose a generic induction principle for well-formed programs, which is
used to prove properties of the semantic model such as determinism and type system correctness. Finally, we describe
the extension of the Vélus compiler to handle these new constructs. We show that the existing compilation scheme that
lowers these constructs into the core dataflow language can be implemented, specified and verified in Coq. Compiling
the reset and last constructs requires deeper changes in the intermediate languages of Vélus.

KEYWORDS

synchronous dataflow languages, Lustre, Scade, verified compilation, state machines, Vélus, Coq

	Introduction
	Context
	Synchronous Languages and Embedded Systems
	Compiler Verification

	Programming with Vélus and State Machines
	Overview of the Vélus Compiler
	Prototype Implementation
	Organization

	Extending Vélus with Control Blocks
	Syntax of the Vélus source language
	Representation of the AST in the Coq Proof Assistant

	Abstracting the CompCert Back End
	Representing Infinite Sequences
	Indexed Streams
	Coinductive Streams

	The Core Dataflow Semantics of Vélus
	Histories and Equations
	Sampling and Clock Typing
	Stateful Operators
	Node Instantiation

	Semantics of Switch
	Activation and Sampling
	Clock Typing of Switch Blocks

	Semantics of Reset
	Reset as Sampling
	Clock Typing of Reset

	Semantics of Local Declarations
	Semantics of Shared Variables
	Semantics of State Machines
	Partial Definitions
	Discussion and Related Work
	Mechanized Semantics for Verified Compilers
	Possibly Finite Coinductive Streams
	Synchronous Semantics for Dataflow Languages
	Modeling the Semantics of State Machines

	Verified Dependency Analysis
	Dependency Graph of a Vélus Program
	Analysis of Expressions
	Dependencies induced by blocks

	Verified Graph Analysis
	Induction Schemes for Causal Programs
	Induction on the labels of a node
	Induction on the syntax of blocks and local declarations
	Induction on the kth stream of an expression

	Determinism of the Semantic Model
	Clock Correctness
	Discussion and Related Work
	Causality Type Systems for Dataflow Languages
	Verified Graph Analysis

	Front-End Compilation
	Parsing of Source Programs
	Generating Fresh Identifiers
	Gensym Axiomatization
	The Fresh Monad

	Elaboration of Lustre Programs
	Clock-Type Elaboration by Monadic Unification
	Translation Validation of the Elaboration

	Structure of the source-to-source rewriting passes
	Normalized subset of the language
	Implementation and Notations

	Completing Partial Definitions
	Compilation Function
	Correctness

	Dependency Analysis and Clocked Semantic Model
	Compiling State Machines
	Compilation Function
	Correctness

	Compiling Switch Blocks
	Compilation Function
	Correctness

	Flattening Local Scopes
	Compilation Function
	Fresh identifiers and the Reuse monad
	Correctness

	Unnesting and Distribution
	Compilation Function
	Correctness

	Normalization of shared variables
	Initializing lasts with constants
	Removing lasts on outputs
	Stateless definitions for lasts

	Normalization of fby equations
	Compilation Function
	Correctness

	Discussion and Related Works
	Translation validation of synchronous dataflow programs
	Generating Fresh Identifiers

	Middle-End Compilation
	The Obc target language
	Syntax of Obc
	A compiled example
	Semantics of Obc
	Optimizations

	NLustre: a normalized dataflow language
	Semantic Models
	Transcription: From Lustre to NLustre
	NLustre Optimizations

	Generalizing the Stc language
	Example and informal semantics
	Syntax of Stc
	Formal semantics of Stc
	From NLustre to Stc

	Translation to imperative Obc code
	From Stc to Obc
	Scheduling of Stc Constraints
	Stc to Obc Correctness proof
	Changes to the Fusion Optimization in Obc

	Discussion and Related Work
	Compilation to CompCert Clight and Beyond
	Verified Compilation in CakeML
	Translation Validation of Dataflow Programs

	Conclusion
	Experimental Evaluation
	Proof Engineering and Practical Concerns
	Open Questions
	Concluding Remarks

	Type Systems and Static Predicates of Vélus
	Node Invariants
	Variables Defined
	No Duplication in Declarations, No Shadowing
	Shape of identifiers

	Type System
	Clock-Type System

	Full Compilation of the Introductory Example
	A Semantic Preservation Proof
	Bibliography
	Index

