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Block-Diagram Languages for Embedded Systems

Widely used in safety-critical applications:
Aerospace, Defense, Rail Transportation, Heavy Equipment, Energy, Nuclear. . .
Scade 6: Qualified compiler for Lustre + Control Structures
Our work: Verified compilation in an Interactive Theorem Prover (Coq)
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Hierarchical State Machines – Example
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pause F F F . . . F F . . . T . . . F . . . F . . .
time 0 0 50 . . . 750 0 . . . 150 . . . 350 . . . 500 . . .
step T F F . . . T F . . . F . . . F . . . T . . .
ena T T T . . . T T . . . T . . . T . . . T . . .

Feeding Holding Feeding
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Hierarchical State Machines – Example
node feed_pause(pause : bool) returns (ena, step : bool)
var time : int;
let
reset
time = count_up(50)

every (false fby step);

automaton initially Feeding

end
tel

state Feeding do
ena = true;
automaton initially Starting

end;
unless pause then Holding

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

state Holding do
step = false;
automaton initially Waiting

end;
unless
| not pause and time >= 750 then Feeding
| not pause continue Feeding

state Waiting do
ena = true

unless time >= 500 then Modulating

state Modulating do
ena = pwm(true)

H∗

pause F F F . . . F F . . . T . . . F . . . F . . .
time 0 0 50 . . . 750 0 . . . 150 . . . 350 . . . 500 . . .
step T F F . . . T F . . . F . . . F . . . T . . .
ena T T T . . . T T . . . T . . . T . . . T . . .

Feeding Holding Feeding
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Compilation of state machines
node feed_pause(pause : bool) returns (ena, step : bool)
var time : int;
let
reset
time = count_up(50)

every (false fby step);

automaton initially Feeding

end
tel

state Feeding do
ena = true;
automaton initially Starting

end;
unless pause then Holding

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

state Holding do
step = false;
automaton initially Waiting

end;
unless
| not pause and time >= 750 then Feeding
| not pause continue Feeding

state Waiting do
ena = true

unless time >= 500 then Modulating

state Modulating do
ena = pwm(true)

H∗
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Compilation of state machines
automaton initially Starting

end

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving
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Compilation of state machines
automaton initially Starting

end

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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The translation function is given in figure 6. An automa-
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possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
Colaço, Pagano, and Pouzet (EMSOFT 2005): A Conservative

Extension of Synchronous Data-flow with State Machines

]
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Compilation of state machines
automaton initially Starting

end

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if false -> time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true -> false

every res
| Moving do ...
end

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not
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′
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match pns with
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1 every pnr

...
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′
n every pnr

and

match s with
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possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
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=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
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...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)
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possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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Compilation of state machines
automaton initially Starting

end

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if false -> time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true -> false

every res
| Moving do ...
end

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
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(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and
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(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)
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possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)
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possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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Compilation of state machines
automaton initially Starting

end

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if false -> time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true -> false

every res
| Moving do ...
end

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
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i)
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possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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Compilation of state machines
automaton initially Starting

end

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if false -> time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true -> false

every res
| Moving do ...
end

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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Compilation of state machines
automaton initially Starting

end

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if false -> time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true -> false

every res
| Moving do ...
end

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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Compilation of state machines
automaton initially Starting

end

state Starting do
step = true -> false

unless false -> time >= 750 then Moving

state Moving do
step = true -> false

unless time >= 500 then Moving

(pst, pres) = (Starting, false) fby (st, res);
switch pst
| Starting do
reset
(st, res) =
if false -> time >= 750
then (Moving, true)
else (Starting, false)

every pres
| Moving do ...
end;
switch st
| Starting do
reset
step = true -> false

every res
| Moving do ...
end

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then
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Compilation of switch blocks

switch st
| Starting do
reset
step = true -> false

every res
| Holding do ...
end

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) -> false when (st=Starting)

every resS;

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
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]
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Compilation of switch blocks

switch st
| Starting do
reset
step = true -> false

every res
| Holding do ...
end

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) -> false when (st=Starting)

every resS;

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
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Extension of Synchronous Data-flow with State Machines

]
sampling explicited by when
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Compilation of switch blocks

switch st
| Starting do
reset
step = true -> false

every res
| Holding do ...
end

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) -> false when (st=Starting)

every resS;

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
Colaço, Pagano, and Pouzet (EMSOFT 2005): A Conservative

Extension of Synchronous Data-flow with State Machines

]
sampling explicited by when
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constants are also sampled

only reset blocks remain
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Compilation of switch blocks

switch st
| Starting do
reset
step = true -> false

every res
| Holding do ...
end

resS = res when (st=Starting);
resM = res when (st=Moving);
step = merge st (Starting => stepS) (Moving => stepM);
reset
stepS = true when (st=Starting) -> false when (st=Starting)

every resS;

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x
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This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not
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and

match s with
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...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr
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′
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Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

CMatch (e) (C1 → (D1, N1))...(Cn → (Dn, Nn)) =

D′
1 and ... and D′

2 and

clock x = e and

y1 = merge x

(C1 → projC1(x)
y1

(G1))

...

(Cn → projCn(x)
y1

(Gn))

and ... and

yk = merge x

(C1 → projC1(x)
yk

(Gk))

...

(Cn → projCn(x)
yk

(Gk))

where ∀i, x 6∈ fv(e) ∪ fv(Di)

and {y1, ..., yk} = N1 ∪ ... ∪Nn

and ∀iD′
i, Gi = SplitNi

(COn Di Ci(x))

Figure 5: The translation of match

ables. This code is translated into:

clock c = x

and cpt = 1 -> ((pre o1) when Left(c)) + 1

and o1 = merge c (Left -> 2 * cpt) (Right -> 0)

and o2 = merge c

(Left -> (pre o2) when Right(c))

(Right -> (1 -> pre (o2 when Right(c)) + 1))

This translation highlights the fact that last o1 in the

source program refers to the previous value of o1 whereas

pre o2 refers to the value o2 had, the last time x was equal

to Right.

3.2.1.3 Automata

The automaton construction is translated by applying re-

cursively the translation function to its components as de-

scribed in figure 4. For this purpose, we have introduced

the translation function for handlers. We write TC(u) =

(D, es, er), TC(s) = (D, es, er) and TC(w) = (D, es, er) for

translating the constructions u and escape conditions s and

w. D stands for a set of declarations, es denotes an expres-

sion computing a state according to an escape condition and

er denotes an expression computing a reset condition for the

next state. The translation function is parameterized by the

state name S of the handler. In case no escape occur, the

state expression must return S.

The translation function is given in figure 6. An automa-

ton is translated into two case statements: the first one

computes what is the current state to be executed accord-

ing to strong preemptions whereas the second one computes

the equations in the current state and where to go at the

next state. We introduce several auxiliary variables. s de-

fines what is the current state; ns stands for the next state

whereas pns stands for its previous value. r stands for a

boolean value which is true if the current state must be re-

set on entry; nr is true if the state to be executed at the

next reaction will have to be reset; pnr stands for its previ-

ous value. Moreover, we must add a new type definition of

the form type t = S1+...+Sn provided there is no name con-

flict neither with existing type names nor with enumerated

values (otherwise, some renaming should apply).

Observe that, as a consequence of this semantics, in an

automaton only one set of equations is executed during a

reaction. It is moreover possible to enter strongly in a state

and leave it weakly (or conversely). Nonetheless, it is not

CAutomaton S1 → (D1, es1, er1) (D
′
1, es

′
1, er1) ...

Sn → (Dn, esn, ern) (D
′
n, es

′
n, ern)

=

match pns with

S1 → reset s = es′1 and r = er′1 andD
′
1 every pnr

...
Sn → reset s = es′n and r = er′n andD

′
n every pnr

and

match s with

S1 → reset ns = sw1 andnr = rw1 andD1 every r

...
Sn → reset ns = swn andnr = rwn andDn every r

and clock pns = S1 fby ns

and clock pnr = False fby nr

where ∀i.s, ns, r, nr 6∈ FV (esi) ∪ FV (eri)

∪FV (Di) ∪ FV (D
′
i)

Figure 6: The translation of automata

possible to enter and leave strongly during one reaction, that

is, to cross more than two transitions. This is a key differ-

ence with the SyncChart or StateCharts, and largely

simplifies program understanding and analysis.

3.2.2 The Type System

We should first extend the typing rule for the new pro-

gramming constructs. The typing rule should mimic the

translation semantics such that it gives the same types as

the typing of the translation. These rules state in particular

that newly introduced constructions are only allowed in a

node (they are considered as state-full constructions). For

the node chrono, the compiler automatically computes the

type bool× bool
1−→ int× int.

Typing does not raise any particular difficulty and we do

not detail it here. When typing a program, it is possible to

restrict the use of last x such that last x is only accepted

when x is a shared variable, that is, a variable which is de-

fined either in a case statement or an automaton. This way,

there is no possible confusion between last x and pre (x) (it

is not possible to write last x in a context where it behaves

like pre (x)). There is technically no reason to restrict the

use of last x since a pending last x can always be replaced

by pre (x) once control structures have been translated into

the basic language. We have experimented both solutions

in our compilers. Experimenting real-size designs will help

in choosing the more appropriate solution.

3.2.3 The Clock System

The clock calculus must be extended such that translated

program can be accepted by the basic clock calculus and can

thus be safely compiled. Remember that we have introduced

the notation COn D C(c) to say that every free variable in a

block is observed on the local clock defined by the block. We

now define H onck C(c) to apply on clocking environment

in order to simulate this process during the clock calculus.

Consider for example a match/with statement which is itself

executed on some clock ck. When entering in a branch, a

free variable x with defined clock ck will be read on the

sub-clock ck on C(c) of ck.

(H onck C(c))(x) = H(x) on C(c) provided H(x) = ck

For example, if H = [α/x1, α/x2] then H onα (C(c) : α) is

an environment H′ such that the clock information associ-

ated to x1 in H′ is α on C(c). As a consequence, if a free

variable has some sub-clock ck on C′(c′) instead of ck, then

[
Colaço, Pagano, and Pouzet (EMSOFT 2005): A Conservative

Extension of Synchronous Data-flow with State Machines

]
sampling explicited by when

choice explicited by merge

constants are also sampled
only reset blocks remain
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Main Correctness Theorem

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

Theorem behavior_asm:
∀ D G Gp P main ins outs,
elab_declarations D = OK (exist _ G Gp) →
compile D main = OK P →
sem_node G main (pStr ins) (pStr outs) →
wt_ins G main ins →
wc_ins G main ins →
∃ T, program_behaves (Asm.semantics P) (Reacts T)

∧ bisim_IO G main ins outs T.
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Assembly

Theorem behavior_asm:
∀ D G Gp P main ins outs,
elab_declarations D = OK (exist _ G Gp) →
compile D main = OK P →
sem_node G main (pStr ins) (pStr outs) →
wt_ins G main ins →
wc_ins G main ins →
∃ T, program_behaves (Asm.semantics P) (Reacts T)

∧ bisim_IO G main ins outs T.

if typing/elaboration succeeds. . .

and compilation succeeds. . .

and there exists a
dataflow semantics. . .

and input streams are well-typed and well-clocked. . .

then the generated assembly
produces an infinite trace

and the trace corresponds to the dataflow model.
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Dataflow relational semantics

G (f ) = node f (x1, . . . , xn) returns (y1, . . . , ym) blk
∀i ,H(xi ) ≡ xss i ∀j ,H(yj) ≡ yss j G ,H ⊢ blk

G ⊢ f (xss) ⇓ yss
sem_node

Bourke, Pesin, Pouzet Verified Compilation of Synchronous Dataflow with State Machines 9 / 15



Dataflow relational semantics

G (f ) = node f (x1, . . . , xn) returns (y1, . . . , ym) blk
∀i ,H(xi ) ≡ xss i ∀j ,H(yj) ≡ yss j G ,H ⊢ blk
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pause F F F . . . F F . . . T . . . F . . . F . . .
time 0 0 50 . . . 750 0 . . . 150 . . . 350 . . . 500 . . .
step T F F . . . T F . . . F . . . F . . . T . . .
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time 0 0 50 . . . 750 0 . . . 150 . . . 350 . . . 500 . . .
step T F F . . . T F . . . F . . . F . . . T . . .

∀i ,H(xs i ) ≡ vss i G ,H ⊢ es ⇓ vss
G ,H ⊢ xs = es

sem_equation
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sem_equation

G ,H ⊢ e ⇓ [vs]
∀i ,G , (whenCi vs H) ⊢ blks i

G ,H ⊢ switch e [Ci do blks i ]i end
sem_switch
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Dataflow relational semantics

G (f ) = node f (x1, . . . , xn) returns (y1, . . . , ym) blk
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step T F F . . . T F . . . F . . . F . . . T . . .

∀i ,H(xs i ) ≡ vss i G ,H ⊢ es ⇓ vss
G ,H ⊢ xs = es

sem_equation

G ,H ⊢ e ⇓ [vs]
∀i ,G , (whenCi vs H) ⊢ blks i

G ,H ⊢ switch e [Ci do blks i ]i end
sem_switch

when for switch blocks
mask for reset blocks
select for state machines
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Compilation correctness – state machines

blk⌊
blk

⌋

definition completion

shared variables

state machines

switch blocks

local scopes

normalization

Lemma (State machines correctness)

if G ,H ⊢ blk then G ,H ⊢
⌊
blk

⌋
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Compilation correctness – state machines

blk⌊
blk

⌋

definition completion

shared variables

state machines

switch blocks

local scopes

normalization

Lemma (State machines correctness)

if G ,H ⊢ blk then G ,H ⊢
⌊
blk

⌋

Works well:
local transformation and
reasoning
correspondence between
select, mask and when
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Compilation correctness – state machines

blk⌊
blk
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definition completion

shared variables

state machines

switch blocks

local scopes

normalization

Lemma (State machines correctness)

if G ,H ⊢ blk then G ,H ⊢
⌊
blk

⌋

Works well:
local transformation and
reasoning
correspondence between
select, mask and when

Works less well:
static invariants (typing,
clock-typing, . . . )
fresh identifiers
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Compilation correctness – switch blocks

blk⌊
blk

⌋
σ,ck

definition completion

shared variables

state machines

switch blocks

local scopes

normalization

Lemma (Switch correctness)

if G ,H1 ⊢ blk and H1 ⊑σ H2 then G ,H2 ⊢
⌊
blk

⌋
σ,ck
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normalization

Lemma (Switch correctness)

if G ,H1 ⊢ blk and H1 ⊑σ H2 then G ,H2 ⊢
⌊
blk

⌋
σ,ck

Works less well:
reasoning is not local:
renaming propagates to
sub-blocks
static invariants, in
particular clock-typing
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σ,ck

definition completion

shared variables

state machines

switch blocks

local scopes

normalization

Lemma (Switch correctness)

if G ,H1 ⊢ blk and H1 ⊑σ H2 then G ,H2 ⊢
⌊
blk

⌋
σ,ck

Works well:
correspondence between
switch and when/merge:
implicit to explicit sampling
less cases to handle

Works less well:
reasoning is not local:
renaming propagates to
sub-blocks
static invariants, in
particular clock-typing
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The Vélus Compiler

Untyped
Lustre

Lustre

NLustre

Stc

ObcClightAssembly

parsing

elaboration definition
completion

dependency
analysis

shared
variables

state
machines

switch
blocks

local
scopes

normalization transcription

dataflow
optimizations

i-translation

scheduling

s-stranslation

branching
optimizations

generationcompilation by CompCert

[Leroy ( 2009): Formal verification of a realistic compiler ]

printing

dataflow

transition systems

imperative
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Generation of imperative code

NLustre

Stc

Obc

Clight

resS = res when (st=Starting);
reset
stepS = (true when (st=Starting)) fby (false when (st=Starting))

every resS;
ena = true;
step = merge st (Starting => stepS) (Moving => stepM);[

Biernacki, Colaço, Hamon, and Pouzet (LCTES
2008): Clock-directed modular code generation
for synchronous data-flow languages

]

Each controlled expression/reset produces
a switch instruction

Quality of fusion depends on the
scheduling

Extensions of Stc: reset on state
variables, multiple reset conditions
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Performances

Vélus Hept+CompCert Hept+gcc Hept+gcci
stepper_motor 930 1185 (+27%) 610 (−34%) 535 (−42%)

chrono 505 970 (+92%) 570 (+12%) 570 (+12%)

cruisecontrol 1405 1745 (+24%) 960 (−31%) 895 (−36%)

heater 2415 3125 (+29%) 730 (−69%) 515 (−78%)

buttons 1015 1430 (+40%) 625 (−38%) 625 (−38%)

stopwatch 1305 1970 (+50%) 1290 (−1%) 1290 (−1%)

WCET estimated by OTAWA 2
[
Ballabriga, Cassé, Rochange, and Sainrat (LNCS 2010):
OTAWA: An Open Toolbox for Adaptive WCET Analysis

]
for an armv7

Vélus generally better than Heptagon, but worse than Heptagon+GCC

Inlining of CompCert not fine tuned to small functions generated by Vélus
Some possible improvements

Better compilation of last to reduce useless updates (done in unpublished version)
Memory optimization: state variables in mutually exclusive states can be be reused
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Conclusion

Our contributions:
a Coq-based semantics for the control blocks of Scade 6

switch blocks
reset blocks
state machines

a verified implementation of an efficient compilation scheme for these blocks

https://velus.inria.fr/emsoft2023
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Semantics – switch blocks

whenC (‹› · xs) (‹› · cs) ≡ ‹› · whenC xs cs
whenC (‹v› · xs) (‹C› · cs) ≡ ‹v› · whenC xs cs
whenC (‹v› · xs) (‹C ′› · cs) ≡ ‹› · whenC xs cs

(whenC H cs)(x) ≡ whenC (H(x)) cs

G ,H, bs ⊢ e ⇓ [cs] ∀i , G ,whenCi (H, bs) cs ⊢ blksi
G ,H, bs ⊢ switch e [Ci do blksi ]i end
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Semantics – reset blocks

maskk
k ′ (F · rs) (sv · xs) ≡ (if k ′ = k then sv else ‹›) · maskk

k ′ rs xs
maskk

k ′ (T · rs) (sv · xs) ≡ (if k ′ + 1 = k then sv else ‹›) · maskk
k ′+1 rs xs

G ,H, bs ⊢ es ⇓ xss
G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ rs
∀k , G ⊢ f (maskk rs xss) ⇓ (maskk rs yss)
G ,H, bs ⊢ ( reset f every e)(es) ⇓ yss

G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ rs
∀k , G ,maskk rs (H, bs) ⊢ blks
G ,H, bs ⊢ reset blks every e
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Semantics – Hierarchical State Machines

H, bs ⊢ ck ⇓ bs ′ G ,H, bs ′ ⊢I autinits ⇓ sts0
fby sts0 sts1 ≡ sts ∀i , ∀k , G , (selectCi ,k

0 sts (H, bs)),Ci ⊢W autscopei ⇓ (selectCi ,k
0 sts sts1)

G ,H, bs ⊢ automaton initially autinitsck [stateCi autscopei ]
i end

∀x , x ∈ dom(H ′) ⇐⇒ x ∈ locs
∀x e, (last x = e) ∈ locs =⇒ G ,H + H ′, bs ⊢L last x = e

G ,H + H ′, bs ⊢ blks G ,H + H ′, bs,Ci ⊢TR trans ⇓ sts

G ,H, bs,Ci ⊢W var locs do blks until trans ⇓ sts

H, bs ⊢ ck ⇓ bs ′ fby (const bs ′ (C , F)) sts1 ≡ sts
∀i , ∀k , G , (selectCi ,k

0 sts (H, bs)),Ci ⊢TR transi ⇓ (selectCi ,k
0 sts sts1)

∀i , ∀k , G , (selectCi ,k
0 sts1 (H, bs)) ⊢ blksi

G ,H, bs ⊢ automaton initiallyC ck [stateCi do blksi unless transi ]i end
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Semantics – Transitions

first-ofCr (T · bs) (st · sts) ≡ ‹C , r› · first-ofCr bs sts
first-ofCr (F · bs) (st · sts) ≡ st · first-ofCr bs sts

G ,H, bs ⊢ e ⇓ [ys]
bools-of ys ≡ bs ′ G ,H, bs ⊢I autinits ⇓ sts

sts ′ ≡ first-ofCF bs ′ sts
G ,H, bs ⊢I C if e; autinits ⇓ sts ′

sts ≡ const bs (C , F)

G ,H, bs ⊢I otherwiseC ⇓ sts

G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ bs ′

G ,H, bs,Ci ⊢TR trans ⇓ sts
sts ′ ≡ first-ofCF bs ′ sts

G ,H, bs,Ci ⊢TR if e continueC trans ⇓ sts ′

G ,H, bs ⊢ e ⇓ [ys] bools-of ys ≡ bs ′

G ,H, bs,Ci ⊢TR trans ⇓ sts
sts ′ ≡ first-ofCT bs ′ sts

G ,H, bs,Ci ⊢TR if e thenC trans ⇓ sts ′

sts ≡ const bs (Ci , F)

G ,H, bs,Ci ⊢TR ϵ ⇓ sts
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Semantics – local blocks and last variables

H(last x) ≡ vs
G ,H, bs ⊢ last x ⇓ [vs]

∀x , x ∈ dom(H ′) ⇐⇒ x ∈ locs
∀x e, (last x = e) ∈ locs =⇒ G ,H + H ′, bs ⊢L last x = e G ,H + H ′, bs ⊢ blks

G ,H, bs ⊢ var locs let blks tel

G ,H, bs ⊢ e ⇓ [vs0] H(x) ≡ vs1 H(last x) ≡ fby vs0 vs1
G ,H, bs ⊢L last x = e

(H1 + H2)(x) =

{
H2(x) if x ∈ H2
H1(x) otherwise.
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