
Verified Lustre Normalization with Node Subsampling

Timothy Bourke Paul Jeanmaire
Basile Pesin Marc Pouzet

Inria Paris

École normale supérieure, CNRS, PSL University

ESWEEK 2021 - EMSOFT
Tuesday, October 12

11:00am - 11:15am EDT

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 1 / 14

Block-Diagram Languages for Embedded Systems

no
de
eu
ler
(x
0,
u:
do
ub
le)

ret
ur
ns
(x
: d
ou
ble
);

let x =
x0
fby

(x
+
0.1

∗ u
);

tel

• Widely used in safety-critical applications: Aerospace, Defense, Rail
Transportation, Heavy Equipment, Energy, Nuclear. . .

• Scade 6: Qualified compiler for a Lustre-like language
• Our work: Verified compilation in an Interactive Theorem Prover (Coq)

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 2 / 14

Block-Diagram Languages for Embedded Systems

no
de
eu
ler
(x
0,
u:
do
ub
le)

ret
ur
ns
(x
: d
ou
ble
);

let x =
x0
fby

(x
+
0.1

∗ u
);

tel

• Widely used in safety-critical applications: Aerospace, Defense, Rail
Transportation, Heavy Equipment, Energy, Nuclear. . .

• Scade 6: Qualified compiler for a Lustre-like language
• Our work: Verified compilation in an Interactive Theorem Prover (Coq)

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 2 / 14

Untyped
Lustre

Lustre NLustre

Stc

Assembly Clight Obc

parsing elaboration transcription

i-translation

s-translation

generationcompilationprinting

unnesting &
distribution

expression
initialization

scheduling

fusion
optimization

argument
initializationCompCert

dataflow

transition systems

imperative

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 3 / 14

Lustre: example

“count down from n, restarting every time res is true.”

node count_down(res : bool; n : int)
returns (cpt : int)
let
cpt = if res then n else (n fby (cpt − 1));

tel

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 4 / 14

Lustre: example

“count down from n, restarting every time res is true.”

node count_down(res : bool; n : int)
returns (cpt : int)
let
cpt = if res then n else (n fby (cpt − 1));

tel

res F F F T F F F F F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 4 / 14

Lustre: example

“count down from n, restarting every time res is true.”

node count_down(res : bool; n : int)
returns (cpt : int)
let
cpt = if res then n else (n fby (cpt − 1));

tel

res F F F T F F F F F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·
cpt 6 5 4 6 5 4 3 2 1 · · ·

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 4 / 14

Lustre: example

“count down from n, restarting every time res is true.”

node count_down(res : bool; n : int)
returns (cpt : int)
let
cpt = if res then n else (n fby (cpt − 1));

tel

node count_down(res : bool; n : int)
returns (cpt : int)
var norm1$1 : int;
let
norm1$1 = n fby (cpt − 1);
cpt = if res then n else norm1$1;

tel

res F F F T F F F F F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·
norm1$1 6 5 4 3 5 4 3 2 1 · · ·
cpt 6 5 4 6 5 4 3 2 1 · · ·

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 4 / 14

Lustre: example

“count down from n, restarting every time res is true.”

node count_down(res : bool; n : int)
returns (cpt : int)
let
cpt = if res then n else (n fby (cpt − 1));

tel

node count_down(res : bool; n : int)
returns (cpt : int)
var norm1$1, norm2$2 : int; norm2$1 : bool;
let
norm2$1 = true fby false;
norm2$2 = 0 fby (cpt − 1);
norm1$1 = if norm2$1 then n else norm2$2;
cpt = if res then n else norm1$1;

tel

res F F F T F F F T F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·
norm2$1 T F F F F F F F F · · ·
norm2$2 0 5 4 3 5 4 3 2 1 · · ·
norm1$1 6 5 4 3 5 4 3 2 1 · · ·
cpt 6 5 4 6 5 4 3 2 1 · · ·

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 4 / 14

Unnesting & Distribution function

bcc = ([c], [])

bxc = ([x], [])

be1 ⊕ e2c = ([e′1], eqs′1)← be1c
([e′2], eqs′2)← be2c
([e′1 ⊕ e′2], eqs′1 ∪ eqs′2)

b(e1, . . . , en) fby (f1, . . . , fm)c = ([e′1, . . . , e
′
k], eqs′1)← be1, . . . , enc

([f ′1 , . . . , f
′
k], eqs′2)← bf1, . . . , fmc

([x1, . . . , xk], [x1 = e′1 fby f ′1 , . . . , xk = e′k fby f ′k] ∪ eqs′1 ∪ eqs′2)

bf (e1, . . . , en)c = ([e′1, . . . , e
′
m], eqs′)← be1, . . . , enc

([x1, . . . , xk], [(x1, . . . xk) = f (e′1, . . . , e
′
m)] ∪ eqs′)

(x, y) = if res
then (0, 0)
else ((0, 0) fby (x + 1, y − 1));

t1 = 0 fby (x + 1);
t2 = 0 fby (y − 1);
x = if res then 0 else t1;
y = if res then 0 else t2;

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 5 / 14

Unnesting & Distribution function

bcc = ([c], [])

bxc = ([x], [])

be1 ⊕ e2c = ([e′1], eqs′1)← be1c
([e′2], eqs′2)← be2c
([e′1 ⊕ e′2], eqs′1 ∪ eqs′2)

b(e1, . . . , en) fby (f1, . . . , fm)c = ([e′1, . . . , e
′
k], eqs′1)← be1, . . . , enc

([f ′1 , . . . , f
′
k], eqs′2)← bf1, . . . , fmc

([x1, . . . , xk], [x1 = e′1 fby f ′1 , . . . , xk = e′k fby f ′k] ∪ eqs′1 ∪ eqs′2)

bf (e1, . . . , en)c = ([e′1, . . . , e
′
m], eqs′)← be1, . . . , enc

([x1, . . . , xk], [(x1, . . . xk) = f (e′1, . . . , e
′
m)] ∪ eqs′)

(x, y) = if res
then (0, 0)
else ((0, 0) fby (x + 1, y − 1));

t1 = 0 fby (x + 1);
t2 = 0 fby (y − 1);
x = if res then 0 else t1;
y = if res then 0 else t2;

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 5 / 14

Unnesting & Distribution function

bcc = ([c], [])

bxc = ([x], [])

be1 ⊕ e2c = ([e′1], eqs′1)← be1c
([e′2], eqs′2)← be2c
([e′1 ⊕ e′2], eqs′1 ∪ eqs′2)

b(e1, . . . , en) fby (f1, . . . , fm)c = ([e′1, . . . , e
′
k], eqs′1)← be1, . . . , enc

([f ′1 , . . . , f
′
k], eqs′2)← bf1, . . . , fmc

([x1, . . . , xk], [x1 = e′1 fby f ′1 , . . . , xk = e′k fby f ′k] ∪ eqs′1 ∪ eqs′2)

bf (e1, . . . , en)c = ([e′1, . . . , e
′
m], eqs′)← be1, . . . , enc

([x1, . . . , xk], [(x1, . . . xk) = f (e′1, . . . , e
′
m)] ∪ eqs′)

(x, y) = if res
then (0, 0)
else ((0, 0) fby (x + 1, y − 1));

t1 = 0 fby (x + 1);
t2 = 0 fby (y − 1);
x = if res then 0 else t1;
y = if res then 0 else t2;

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 5 / 14

Unnesting & Distribution function

bcc = ([c], [])

bxc = ([x], [])

be1 ⊕ e2c = ([e′1], eqs′1)← be1c
([e′2], eqs′2)← be2c
([e′1 ⊕ e′2], eqs′1 ∪ eqs′2)

b(e1, . . . , en) fby (f1, . . . , fm)c = ([e′1, . . . , e
′
k], eqs′1)← be1, . . . , enc

([f ′1 , . . . , f
′
k], eqs′2)← bf1, . . . , fmc

([x1, . . . , xk], [x1 = e′1 fby f ′1 , . . . , xk = e′k fby f ′k] ∪ eqs′1 ∪ eqs′2)

bf (e1, . . . , en)c = ([e′1, . . . , e
′
m], eqs′)← be1, . . . , enc

([x1, . . . , xk], [(x1, . . . xk) = f (e′1, . . . , e
′
m)] ∪ eqs′)

(x, y) = if res
then (0, 0)
else ((0, 0) fby (x + 1, y − 1));

t1 = 0 fby (x + 1);
t2 = 0 fby (y − 1);
x = if res then 0 else t1;
y = if res then 0 else t2;

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 5 / 14

Unnesting & Distribution in the Coq Proof Assistant

Fresh identifier generation
• In OCaml:

let next = ref 0;;
let fresh () =

next := !next + 1;
"norm$"^(string_of_int !next);;

• We are in a pure functional language
• Use an explicit state (monad)

st st] {(x , b)}
fresh_ident b st = (x, st’)

do x1 ← fresh_ident b1;

do x2 ← fresh_ident b2;

st

st] {(x1, b1)}

st] {(x1, b1)}] {(x2, b2)}

Fixpoint unnest_exp (e : exp) : Fresh (list exp ∗ list equation) ann

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 6 / 14

Unnesting & Distribution in the Coq Proof Assistant
Fresh identifier generation
• In OCaml:

let next = ref 0;;
let fresh () =

next := !next + 1;
"norm$"^(string_of_int !next);;

• We are in a pure functional language
• Use an explicit state (monad)

st st] {(x , b)}
fresh_ident b st = (x, st’)

do x1 ← fresh_ident b1;

do x2 ← fresh_ident b2;

st

st] {(x1, b1)}

st] {(x1, b1)}] {(x2, b2)}

Fixpoint unnest_exp (e : exp) : Fresh (list exp ∗ list equation) ann

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 6 / 14

Unnesting & Distribution in the Coq Proof Assistant
Fresh identifier generation
• In OCaml:

let next = ref 0;;
let fresh () =

next := !next + 1;
"norm$"^(string_of_int !next);;

• We are in a pure functional language
• Use an explicit state (monad)

st st] {(x , b)}
fresh_ident b st = (x, st’)

do x1 ← fresh_ident b1;

do x2 ← fresh_ident b2;

st

st] {(x1, b1)}

st] {(x1, b1)}] {(x2, b2)}

Fixpoint unnest_exp (e : exp) : Fresh (list exp ∗ list equation) ann
Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 6 / 14

Stream Semantics of Lustre

res F F F T F F F F F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·
cpt 6 5 4 6 5 4 3 2 1 · · ·

every trigger {
read inputs;
calculate;
write outputs;

}

Svar
H(x) = vs
H ` x ⇓ vs

Inductive sem_exp:
History → exp → list Stream → Prop :=

| Svar: sem_var H x vs →
sem_exp H (Evar x ann) [vs] [...]

Seq
H ` es ⇓ H(xs)
H ` xs = es

with sem_equation:
History → equation → Prop :=

| Seq: Forall2 (sem_exp H) es ss →
Forall2 (sem_var H) xs (concat ss) →
sem_equation H (xs, es)

Snode

node(G , f)
.
= n

H(n.in) = xs H(n.out) = ys ∀eq ∈ n.eqs, G ,H ` eq
G ` f (xs) ⇓ ys

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 7 / 14

Stream Semantics of Lustre

res F F F T F F F F F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·
cpt 6 5 4 6 5 4 3 2 1 · · ·

every trigger {
read inputs;
calculate;
write outputs;

}

Svar
H(x) = vs
H ` x ⇓ vs

Inductive sem_exp:
History → exp → list Stream → Prop :=

| Svar: sem_var H x vs →
sem_exp H (Evar x ann) [vs] [...]

Seq
H ` es ⇓ H(xs)
H ` xs = es

with sem_equation:
History → equation → Prop :=

| Seq: Forall2 (sem_exp H) es ss →
Forall2 (sem_var H) xs (concat ss) →
sem_equation H (xs, es)

Snode

node(G , f)
.
= n

H(n.in) = xs H(n.out) = ys ∀eq ∈ n.eqs, G ,H ` eq
G ` f (xs) ⇓ ys

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 7 / 14

Stream Semantics of Lustre

res F F F T F F F F F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·
cpt 6 5 4 6 5 4 3 2 1 · · ·

every trigger {
read inputs;
calculate;
write outputs;

}

Svar
H(x) = vs
H ` x ⇓ vs

Inductive sem_exp:
History → exp → list Stream → Prop :=

| Svar: sem_var H x vs →
sem_exp H (Evar x ann) [vs] [...]

Seq
H ` es ⇓ H(xs)
H ` xs = es

with sem_equation:
History → equation → Prop :=

| Seq: Forall2 (sem_exp H) es ss →
Forall2 (sem_var H) xs (concat ss) →
sem_equation H (xs, es)

Snode

node(G , f)
.
= n

H(n.in) = xs H(n.out) = ys ∀eq ∈ n.eqs, G ,H ` eq
G ` f (xs) ⇓ ys

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 7 / 14

Stream Semantics of Lustre

res F F F T F F F F F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·
cpt 6 5 4 6 5 4 3 2 1 · · ·

every trigger {
read inputs;
calculate;
write outputs;

}

Svar
H(x) = vs
H ` x ⇓ vs

Inductive sem_exp:
History → exp → list Stream → Prop :=

| Svar: sem_var H x vs →
sem_exp H (Evar x ann) [vs] [...]

Seq
H ` es ⇓ H(xs)
H ` xs = es

with sem_equation:
History → equation → Prop :=

| Seq: Forall2 (sem_exp H) es ss →
Forall2 (sem_var H) xs (concat ss) →
sem_equation H (xs, es)

Snode

node(G , f)
.
= n

H(n.in) = xs H(n.out) = ys ∀eq ∈ n.eqs, G ,H ` eq
G ` f (xs) ⇓ ys

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 7 / 14

Unnesting & Distribution – correctness

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

transcription

unnesting &
distribution

expression
initialization

1:12

Bourke, Jeanmaire, Pesin, and Pouzet

already appears directly in an equation, there is no need to introduce a new equation, and likewise

for a fby that produces a single str
eam. In fact, we prove that this f

unction is idempotent: for any

program 𝐺 , ⌊⌊𝐺⌋⌋ = ⌊𝐺⌋.

Generating fresh variables. Unnesting subexpressions requires
the introduction of new local

variables. For this reason
, the function that performs unnesting and distribution is structured using

a state monad. It manipulates a state of type fresh_st = (ident × list (ident × (t
y × ck))),

where the first component is used to generate the next new identifier and the second tracks those

that have already been introduced together with their types and clock types.

The type ident is a syno
nym for the positive integers

. For compatibility with later CompCert

stages, identifiers are reg
istered in an external mutable table together wit

h their string representa-

tions. We cannot, however, simply axiomatize a function “newident : unit→ ident” to return

fresh identifiers since, for insta
nce, the valid proposition newident () = newident () would reduce

to the inconsistent one 𝑛 = 𝑛 + 1. Instead we require an external function that maps two identifiers

to a third identifier: gensym : ident→ ident→ ident. The returned identifier is associated in

the external table with the concatenation of the string associated with the first argument, the “$”

character, and the second argument rendered as a decimal string. A runtime check ensures that

the first argument does not already contain a “$”. Proofs rely on two axiomatized properties of

gensym: it produces identifiers th
at differ from those in source files, which the lexer prevents from

containing “$”, and if 𝑥 ≠ 𝑥 ′ or 𝑦 ≠ 𝑦′ then gensym 𝑥 𝑦 ≠ gensym 𝑥
′ 𝑦′. Each compilation pass

generates identifiers usi
ng a different prefix. Sev

eral examples can be found in figure 3: elab$4,

norm1$1, norm2$1, and norm2$2.

The state monad is a function taking a state as input an
d returning a result and updated state.

We abstract it with a type constructor for a r
esult type 𝐴: Fresh A = fresh_st→ (A × fresh_st).

Such functions are built from
the standard monadic operators ret : A→ Fresh A, which returns

the given value and passes the input state un
changed, and bind : Fresh A→ (A→ Fresh B) → B,

which sequences two fun
ctions by passing the retu

rn value and output state
of the first to the second.

We additionally equip the state monad with the function fresh_ident : (ty× ck)→ Fresh ident that

returns an identifier produced by applying gensym to the current prefix and the internal counter.

In the updated state, the counter is incre
mented and the returned identifier is associated with the

given type and clock type in the internal list. After app
lying the unnesting and d

istribution function

to the equations within a node, the internal list is
extracted and appended to the local variable list.

4.2 Unnesting and Distribution Correctness

Theorem 4.1. The unnesting and di
stribution function preserves the input/out

put semantics of any

well-typed and well-cl
ocked program 𝐺 : ∀𝑓 xs ys, 𝐺 ⊢ 𝑓 (xs) ⇓ ys =⇒ ⌊𝐺⌋ ⊢ 𝑓 (xs) ⇓ ys.

The final theorem is stated in terms of a whole program 𝐺 and builds on a lemma for lists

of equations, but the core of the correctness proof focuse
s on the unnesting and distribution

of expressions: ⌊𝑒⌋ = (es
′, eqs′). If the semantics of 𝑒 , relative to an environment 𝐻 , is a list of

streams vs, that is,𝐺,𝐻, bs ⊢ 𝑒 ⇓ vs, then we must show that the produced express
ions es′ have the

same semantics after extending 𝐻
to satisfy the produced equations eqs

′. That is, we must show

∃𝐻 ′, 𝐻 ⊑ 𝐻 ′ ∧ 𝐺,𝐻
′, bs ⊢ eqs′ ∧ 𝐺,𝐻

′, bs ⊢ es′ ⇓ vs.

The extended history is denoted 𝐻 ′. It must refine the original one, 𝐻 ⊑ 𝐻 ′, meaning that all

variables defined in 𝐻 are defined in 𝐻 ′ with the same value, ∀𝑦 𝑣, 𝐻 (𝑦) = 𝑣 =⇒ 𝐻 ′ (𝑦) = 𝑣 .

Additionally, 𝐻
′ must satisfy any new equations. In the Coq proof, the statement described here is

augmented with technical clauses about th
e identifiers in the before and after states of the monad,

and the domains of 𝐻 and 𝐻 ′.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, A
rticle 1. Publication date: January 2021.

1:12

Bourke, Jeanmaire, Pesin, and Pouzet

already appears directly in an equation, there is no need to introduce a new equation, and likewise

for a fby that produces a single str
eam. In fact, we prove that this f

unction is idempotent: for any

program 𝐺 , ⌊⌊𝐺⌋⌋ = ⌊𝐺⌋.

Generating fresh variables. Unnesting subexpressions requires
the introduction of new local

variables. For this reason
, the function that performs unnesting and distribution is structured using

a state monad. It manipulates a state of type fresh_st = (ident × list (ident × (t
y × ck))),

where the first component is used to generate the next new identifier and the second tracks those

that have already been introduced together with their types and clock types.

The type ident is a syno
nym for the positive integers

. For compatibility with later CompCert

stages, identifiers are reg
istered in an external mutable table together wit

h their string representa-

tions. We cannot, however, simply axiomatize a function “newident : unit→ ident” to return

fresh identifiers since, for insta
nce, the valid proposition newident () = newident () would reduce

to the inconsistent one 𝑛 = 𝑛 + 1. Instead we require an external function that maps two identifiers

to a third identifier: gensym : ident→ ident→ ident. The returned identifier is associated in

the external table with the concatenation of the string associated with the first argument, the “$”

character, and the second argument rendered as a decimal string. A runtime check ensures that

the first argument does not already contain a “$”. Proofs rely on two axiomatized properties of

gensym: it produces identifiers th
at differ from those in source files, which the lexer prevents from

containing “$”, and if 𝑥 ≠ 𝑥 ′ or 𝑦 ≠ 𝑦′ then gensym 𝑥 𝑦 ≠ gensym 𝑥
′ 𝑦′. Each compilation pass

generates identifiers usi
ng a different prefix. Sev

eral examples can be found in figure 3: elab$4,

norm1$1, norm2$1, and norm2$2.

The state monad is a function taking a state as input an
d returning a result and updated state.

We abstract it with a type constructor for a r
esult type 𝐴: Fresh A = fresh_st→ (A × fresh_st).

Such functions are built from
the standard monadic operators ret : A→ Fresh A, which returns

the given value and passes the input state un
changed, and bind : Fresh A→ (A→ Fresh B) → B,

which sequences two fun
ctions by passing the retu

rn value and output state
of the first to the second.

We additionally equip the state monad with the function fresh_ident : (ty× ck)→ Fresh ident that

returns an identifier produced by applying gensym to the current prefix and the internal counter.

In the updated state, the counter is incre
mented and the returned identifier is associated with the

given type and clock type in the internal list. After app
lying the unnesting and d

istribution function

to the equations within a node, the internal list is
extracted and appended to the local variable list.

4.2 Unnesting and Distribution Correctness

Theorem 4.1. The unnesting and di
stribution function preserves the input/out

put semantics of any

well-typed and well-cl
ocked program 𝐺 : ∀𝑓 xs ys, 𝐺 ⊢ 𝑓 (xs) ⇓ ys =⇒ ⌊𝐺⌋ ⊢ 𝑓 (xs) ⇓ ys.

The final theorem is stated in terms of a whole program 𝐺 and builds on a lemma for lists

of equations, but the core of the correctness proof focuse
s on the unnesting and distribution

of expressions: ⌊𝑒⌋ = (es
′, eqs′). If the semantics of 𝑒 , relative to an environment 𝐻 , is a list of

streams vs, that is,𝐺,𝐻, bs ⊢ 𝑒 ⇓ vs, then we must show that the produced express
ions es′ have the

same semantics after extending 𝐻
to satisfy the produced equations eqs

′. That is, we must show

∃𝐻 ′, 𝐻 ⊑ 𝐻 ′ ∧ 𝐺,𝐻
′, bs ⊢ eqs′ ∧ 𝐺,𝐻

′, bs ⊢ es′ ⇓ vs.

The extended history is denoted 𝐻 ′. It must refine the original one, 𝐻 ⊑ 𝐻 ′, meaning that all

variables defined in 𝐻 are defined in 𝐻 ′ with the same value, ∀𝑦 𝑣, 𝐻 (𝑦) = 𝑣 =⇒ 𝐻 ′ (𝑦) = 𝑣 .

Additionally, 𝐻
′ must satisfy any new equations. In the Coq proof, the statement described here is

augmented with technical clauses about th
e identifiers in the before and after states of the monad,

and the domains of 𝐻 and 𝐻 ′.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, A
rticle 1. Publication date: January 2021.

∀f xs ys, G ` f (xs) ⇓ ys

=⇒ bGc ` f (xs) ⇓ ys

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 8 / 14

Unnesting & Distribution – correctness

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

transcription

unnesting &
distribution

expression
initialization

1:12

Bourke, Jeanmaire, Pesin, and Pouzet

already appears directly in an equation, there is no need to introduce a new equation, and likewise

for a fby that produces a single str
eam. In fact, we prove that this f

unction is idempotent: for any

program 𝐺 , ⌊⌊𝐺⌋⌋ = ⌊𝐺⌋.

Generating fresh variables. Unnesting subexpressions requires
the introduction of new local

variables. For this reason
, the function that performs unnesting and distribution is structured using

a state monad. It manipulates a state of type fresh_st = (ident × list (ident × (t
y × ck))),

where the first component is used to generate the next new identifier and the second tracks those

that have already been introduced together with their types and clock types.

The type ident is a syno
nym for the positive integers

. For compatibility with later CompCert

stages, identifiers are reg
istered in an external mutable table together wit

h their string representa-

tions. We cannot, however, simply axiomatize a function “newident : unit→ ident” to return

fresh identifiers since, for insta
nce, the valid proposition newident () = newident () would reduce

to the inconsistent one 𝑛 = 𝑛 + 1. Instead we require an external function that maps two identifiers

to a third identifier: gensym : ident→ ident→ ident. The returned identifier is associated in

the external table with the concatenation of the string associated with the first argument, the “$”

character, and the second argument rendered as a decimal string. A runtime check ensures that

the first argument does not already contain a “$”. Proofs rely on two axiomatized properties of

gensym: it produces identifiers th
at differ from those in source files, which the lexer prevents from

containing “$”, and if 𝑥 ≠ 𝑥 ′ or 𝑦 ≠ 𝑦′ then gensym 𝑥 𝑦 ≠ gensym 𝑥
′ 𝑦′. Each compilation pass

generates identifiers usi
ng a different prefix. Sev

eral examples can be found in figure 3: elab$4,

norm1$1, norm2$1, and norm2$2.

The state monad is a function taking a state as input an
d returning a result and updated state.

We abstract it with a type constructor for a r
esult type 𝐴: Fresh A = fresh_st→ (A × fresh_st).

Such functions are built from
the standard monadic operators ret : A→ Fresh A, which returns

the given value and passes the input state un
changed, and bind : Fresh A→ (A→ Fresh B) → B,

which sequences two fun
ctions by passing the retu

rn value and output state
of the first to the second.

We additionally equip the state monad with the function fresh_ident : (ty× ck)→ Fresh ident that

returns an identifier produced by applying gensym to the current prefix and the internal counter.

In the updated state, the counter is incre
mented and the returned identifier is associated with the

given type and clock type in the internal list. After app
lying the unnesting and d

istribution function

to the equations within a node, the internal list is
extracted and appended to the local variable list.

4.2 Unnesting and Distribution Correctness

Theorem 4.1. The unnesting and di
stribution function preserves the input/out

put semantics of any

well-typed and well-cl
ocked program 𝐺 : ∀𝑓 xs ys, 𝐺 ⊢ 𝑓 (xs) ⇓ ys =⇒ ⌊𝐺⌋ ⊢ 𝑓 (xs) ⇓ ys.

The final theorem is stated in terms of a whole program 𝐺 and builds on a lemma for lists

of equations, but the core of the correctness proof focuse
s on the unnesting and distribution

of expressions: ⌊𝑒⌋ = (es
′, eqs′). If the semantics of 𝑒 , relative to an environment 𝐻 , is a list of

streams vs, that is,𝐺,𝐻, bs ⊢ 𝑒 ⇓ vs, then we must show that the produced express
ions es′ have the

same semantics after extending 𝐻
to satisfy the produced equations eqs

′. That is, we must show

∃𝐻 ′, 𝐻 ⊑ 𝐻 ′ ∧ 𝐺,𝐻
′, bs ⊢ eqs′ ∧ 𝐺,𝐻

′, bs ⊢ es′ ⇓ vs.

The extended history is denoted 𝐻 ′. It must refine the original one, 𝐻 ⊑ 𝐻 ′, meaning that all

variables defined in 𝐻 are defined in 𝐻 ′ with the same value, ∀𝑦 𝑣, 𝐻 (𝑦) = 𝑣 =⇒ 𝐻 ′ (𝑦) = 𝑣 .

Additionally, 𝐻
′ must satisfy any new equations. In the Coq proof, the statement described here is

augmented with technical clauses about th
e identifiers in the before and after states of the monad,

and the domains of 𝐻 and 𝐻 ′.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, A
rticle 1. Publication date: January 2021.

1:12

Bourke, Jeanmaire, Pesin, and Pouzet

already appears directly in an equation, there is no need to introduce a new equation, and likewise

for a fby that produces a single str
eam. In fact, we prove that this f

unction is idempotent: for any

program 𝐺 , ⌊⌊𝐺⌋⌋ = ⌊𝐺⌋.

Generating fresh variables. Unnesting subexpressions requires
the introduction of new local

variables. For this reason
, the function that performs unnesting and distribution is structured using

a state monad. It manipulates a state of type fresh_st = (ident × list (ident × (t
y × ck))),

where the first component is used to generate the next new identifier and the second tracks those

that have already been introduced together with their types and clock types.

The type ident is a syno
nym for the positive integers

. For compatibility with later CompCert

stages, identifiers are reg
istered in an external mutable table together wit

h their string representa-

tions. We cannot, however, simply axiomatize a function “newident : unit→ ident” to return

fresh identifiers since, for insta
nce, the valid proposition newident () = newident () would reduce

to the inconsistent one 𝑛 = 𝑛 + 1. Instead we require an external function that maps two identifiers

to a third identifier: gensym : ident→ ident→ ident. The returned identifier is associated in

the external table with the concatenation of the string associated with the first argument, the “$”

character, and the second argument rendered as a decimal string. A runtime check ensures that

the first argument does not already contain a “$”. Proofs rely on two axiomatized properties of

gensym: it produces identifiers th
at differ from those in source files, which the lexer prevents from

containing “$”, and if 𝑥 ≠ 𝑥 ′ or 𝑦 ≠ 𝑦′ then gensym 𝑥 𝑦 ≠ gensym 𝑥
′ 𝑦′. Each compilation pass

generates identifiers usi
ng a different prefix. Sev

eral examples can be found in figure 3: elab$4,

norm1$1, norm2$1, and norm2$2.

The state monad is a function taking a state as input an
d returning a result and updated state.

We abstract it with a type constructor for a r
esult type 𝐴: Fresh A = fresh_st→ (A × fresh_st).

Such functions are built from
the standard monadic operators ret : A→ Fresh A, which returns

the given value and passes the input state un
changed, and bind : Fresh A→ (A→ Fresh B) → B,

which sequences two fun
ctions by passing the retu

rn value and output state
of the first to the second.

We additionally equip the state monad with the function fresh_ident : (ty× ck)→ Fresh ident that

returns an identifier produced by applying gensym to the current prefix and the internal counter.

In the updated state, the counter is incre
mented and the returned identifier is associated with the

given type and clock type in the internal list. After app
lying the unnesting and d

istribution function

to the equations within a node, the internal list is
extracted and appended to the local variable list.

4.2 Unnesting and Distribution Correctness

Theorem 4.1. The unnesting and di
stribution function preserves the input/out

put semantics of any

well-typed and well-cl
ocked program 𝐺 : ∀𝑓 xs ys, 𝐺 ⊢ 𝑓 (xs) ⇓ ys =⇒ ⌊𝐺⌋ ⊢ 𝑓 (xs) ⇓ ys.

The final theorem is stated in terms of a whole program 𝐺 and builds on a lemma for lists

of equations, but the core of the correctness proof focuse
s on the unnesting and distribution

of expressions: ⌊𝑒⌋ = (es
′, eqs′). If the semantics of 𝑒 , relative to an environment 𝐻 , is a list of

streams vs, that is,𝐺,𝐻, bs ⊢ 𝑒 ⇓ vs, then we must show that the produced express
ions es′ have the

same semantics after extending 𝐻
to satisfy the produced equations eqs

′. That is, we must show

∃𝐻 ′, 𝐻 ⊑ 𝐻 ′ ∧ 𝐺,𝐻
′, bs ⊢ eqs′ ∧ 𝐺,𝐻

′, bs ⊢ es′ ⇓ vs.

The extended history is denoted 𝐻 ′. It must refine the original one, 𝐻 ⊑ 𝐻 ′, meaning that all

variables defined in 𝐻 are defined in 𝐻 ′ with the same value, ∀𝑦 𝑣, 𝐻 (𝑦) = 𝑣 =⇒ 𝐻 ′ (𝑦) = 𝑣 .

Additionally, 𝐻
′ must satisfy any new equations. In the Coq proof, the statement described here is

augmented with technical clauses about th
e identifiers in the before and after states of the monad,

and the domains of 𝐻 and 𝐻 ′.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, A
rticle 1. Publication date: January 2021.

∀f xs ys, G ` f (xs) ⇓ ys

=⇒ bGc ` f (xs) ⇓ ys
bec = (es′, eqs′).

G ,H, bs ` e ⇓ vs

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 8 / 14

Unnesting & Distribution – correctness

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

transcription

unnesting &
distribution

expression
initialization

1:12

Bourke, Jeanmaire, Pesin, and Pouzet

already appears directly in an equation, there is no need to introduce a new equation, and likewise

for a fby that produces a single str
eam. In fact, we prove that this f

unction is idempotent: for any

program 𝐺 , ⌊⌊𝐺⌋⌋ = ⌊𝐺⌋.

Generating fresh variables. Unnesting subexpressions requires
the introduction of new local

variables. For this reason
, the function that performs unnesting and distribution is structured using

a state monad. It manipulates a state of type fresh_st = (ident × list (ident × (t
y × ck))),

where the first component is used to generate the next new identifier and the second tracks those

that have already been introduced together with their types and clock types.

The type ident is a syno
nym for the positive integers

. For compatibility with later CompCert

stages, identifiers are reg
istered in an external mutable table together wit

h their string representa-

tions. We cannot, however, simply axiomatize a function “newident : unit→ ident” to return

fresh identifiers since, for insta
nce, the valid proposition newident () = newident () would reduce

to the inconsistent one 𝑛 = 𝑛 + 1. Instead we require an external function that maps two identifiers

to a third identifier: gensym : ident→ ident→ ident. The returned identifier is associated in

the external table with the concatenation of the string associated with the first argument, the “$”

character, and the second argument rendered as a decimal string. A runtime check ensures that

the first argument does not already contain a “$”. Proofs rely on two axiomatized properties of

gensym: it produces identifiers th
at differ from those in source files, which the lexer prevents from

containing “$”, and if 𝑥 ≠ 𝑥 ′ or 𝑦 ≠ 𝑦′ then gensym 𝑥 𝑦 ≠ gensym 𝑥
′ 𝑦′. Each compilation pass

generates identifiers usi
ng a different prefix. Sev

eral examples can be found in figure 3: elab$4,

norm1$1, norm2$1, and norm2$2.

The state monad is a function taking a state as input an
d returning a result and updated state.

We abstract it with a type constructor for a r
esult type 𝐴: Fresh A = fresh_st→ (A × fresh_st).

Such functions are built from
the standard monadic operators ret : A→ Fresh A, which returns

the given value and passes the input state un
changed, and bind : Fresh A→ (A→ Fresh B) → B,

which sequences two fun
ctions by passing the retu

rn value and output state
of the first to the second.

We additionally equip the state monad with the function fresh_ident : (ty× ck)→ Fresh ident that

returns an identifier produced by applying gensym to the current prefix and the internal counter.

In the updated state, the counter is incre
mented and the returned identifier is associated with the

given type and clock type in the internal list. After app
lying the unnesting and d

istribution function

to the equations within a node, the internal list is
extracted and appended to the local variable list.

4.2 Unnesting and Distribution Correctness

Theorem 4.1. The unnesting and di
stribution function preserves the input/out

put semantics of any

well-typed and well-cl
ocked program 𝐺 : ∀𝑓 xs ys, 𝐺 ⊢ 𝑓 (xs) ⇓ ys =⇒ ⌊𝐺⌋ ⊢ 𝑓 (xs) ⇓ ys.

The final theorem is stated in terms of a whole program 𝐺 and builds on a lemma for lists

of equations, but the core of the correctness proof focuse
s on the unnesting and distribution

of expressions: ⌊𝑒⌋ = (es
′, eqs′). If the semantics of 𝑒 , relative to an environment 𝐻 , is a list of

streams vs, that is,𝐺,𝐻, bs ⊢ 𝑒 ⇓ vs, then we must show that the produced express
ions es′ have the

same semantics after extending 𝐻
to satisfy the produced equations eqs

′. That is, we must show

∃𝐻 ′, 𝐻 ⊑ 𝐻 ′ ∧ 𝐺,𝐻
′, bs ⊢ eqs′ ∧ 𝐺,𝐻

′, bs ⊢ es′ ⇓ vs.

The extended history is denoted 𝐻 ′. It must refine the original one, 𝐻 ⊑ 𝐻 ′, meaning that all

variables defined in 𝐻 are defined in 𝐻 ′ with the same value, ∀𝑦 𝑣, 𝐻 (𝑦) = 𝑣 =⇒ 𝐻 ′ (𝑦) = 𝑣 .

Additionally, 𝐻
′ must satisfy any new equations. In the Coq proof, the statement described here is

augmented with technical clauses about th
e identifiers in the before and after states of the monad,

and the domains of 𝐻 and 𝐻 ′.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, A
rticle 1. Publication date: January 2021.

1:12

Bourke, Jeanmaire, Pesin, and Pouzet

already appears directly in an equation, there is no need to introduce a new equation, and likewise

for a fby that produces a single str
eam. In fact, we prove that this f

unction is idempotent: for any

program 𝐺 , ⌊⌊𝐺⌋⌋ = ⌊𝐺⌋.

Generating fresh variables. Unnesting subexpressions requires
the introduction of new local

variables. For this reason
, the function that performs unnesting and distribution is structured using

a state monad. It manipulates a state of type fresh_st = (ident × list (ident × (t
y × ck))),

where the first component is used to generate the next new identifier and the second tracks those

that have already been introduced together with their types and clock types.

The type ident is a syno
nym for the positive integers

. For compatibility with later CompCert

stages, identifiers are reg
istered in an external mutable table together wit

h their string representa-

tions. We cannot, however, simply axiomatize a function “newident : unit→ ident” to return

fresh identifiers since, for insta
nce, the valid proposition newident () = newident () would reduce

to the inconsistent one 𝑛 = 𝑛 + 1. Instead we require an external function that maps two identifiers

to a third identifier: gensym : ident→ ident→ ident. The returned identifier is associated in

the external table with the concatenation of the string associated with the first argument, the “$”

character, and the second argument rendered as a decimal string. A runtime check ensures that

the first argument does not already contain a “$”. Proofs rely on two axiomatized properties of

gensym: it produces identifiers th
at differ from those in source files, which the lexer prevents from

containing “$”, and if 𝑥 ≠ 𝑥 ′ or 𝑦 ≠ 𝑦′ then gensym 𝑥 𝑦 ≠ gensym 𝑥
′ 𝑦′. Each compilation pass

generates identifiers usi
ng a different prefix. Sev

eral examples can be found in figure 3: elab$4,

norm1$1, norm2$1, and norm2$2.

The state monad is a function taking a state as input an
d returning a result and updated state.

We abstract it with a type constructor for a r
esult type 𝐴: Fresh A = fresh_st→ (A × fresh_st).

Such functions are built from
the standard monadic operators ret : A→ Fresh A, which returns

the given value and passes the input state un
changed, and bind : Fresh A→ (A→ Fresh B) → B,

which sequences two fun
ctions by passing the retu

rn value and output state
of the first to the second.

We additionally equip the state monad with the function fresh_ident : (ty× ck)→ Fresh ident that

returns an identifier produced by applying gensym to the current prefix and the internal counter.

In the updated state, the counter is incre
mented and the returned identifier is associated with the

given type and clock type in the internal list. After app
lying the unnesting and d

istribution function

to the equations within a node, the internal list is
extracted and appended to the local variable list.

4.2 Unnesting and Distribution Correctness

Theorem 4.1. The unnesting and di
stribution function preserves the input/out

put semantics of any

well-typed and well-cl
ocked program 𝐺 : ∀𝑓 xs ys, 𝐺 ⊢ 𝑓 (xs) ⇓ ys =⇒ ⌊𝐺⌋ ⊢ 𝑓 (xs) ⇓ ys.

The final theorem is stated in terms of a whole program 𝐺 and builds on a lemma for lists

of equations, but the core of the correctness proof focuse
s on the unnesting and distribution

of expressions: ⌊𝑒⌋ = (es
′, eqs′). If the semantics of 𝑒 , relative to an environment 𝐻 , is a list of

streams vs, that is,𝐺,𝐻, bs ⊢ 𝑒 ⇓ vs, then we must show that the produced express
ions es′ have the

same semantics after extending 𝐻
to satisfy the produced equations eqs

′. That is, we must show

∃𝐻 ′, 𝐻 ⊑ 𝐻 ′ ∧ 𝐺,𝐻
′, bs ⊢ eqs′ ∧ 𝐺,𝐻

′, bs ⊢ es′ ⇓ vs.

The extended history is denoted 𝐻 ′. It must refine the original one, 𝐻 ⊑ 𝐻 ′, meaning that all

variables defined in 𝐻 are defined in 𝐻 ′ with the same value, ∀𝑦 𝑣, 𝐻 (𝑦) = 𝑣 =⇒ 𝐻 ′ (𝑦) = 𝑣 .

Additionally, 𝐻
′ must satisfy any new equations. In the Coq proof, the statement described here is

augmented with technical clauses about th
e identifiers in the before and after states of the monad,

and the domains of 𝐻 and 𝐻 ′.

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, A
rticle 1. Publication date: January 2021.

∀f xs ys, G ` f (xs) ⇓ ys

=⇒ bGc ` f (xs) ⇓ ys
bec = (es′, eqs′).

G ,H, bs ` e ⇓ vs

∃H′, H v H
′ ∧ G ,H

′, bs ` eqs′

∧ G ,H
′, bs ` es′ ⇓ vs

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 8 / 14

Expression Initialization

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

transcription

unnesting &
distribution

expression
initialization

⌊
x = (e0 fby e)ck

⌋
fby

=


xinit = trueck fby falseck;
px = defckty fby e;
x = if xinit then e0 else px;

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 9 / 14

Expression Initialization

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

transcription

unnesting &
distribution

expression
initialization

⌊
x = (e0 fby e)ck

⌋
fby

=


xinit = trueck fby falseck;
px = defckty fby e;
x = if xinit then e0 else px;

Optimization: avoid introducing several init registers
• Registers are costly in the final imperative program
• Use state monad to remember init registers introduced:

Fresh A (ann ∗ bool)

• Complicates the correctness proof with a non-local invariant

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 9 / 14

Clock system correctness

x = 0 fby (x + 1) 0 1 2 3 4 5 6 8 9 . . .
b T T F F T T T F F . . .
x when b 0 1 4 5 6 . . .

A special type system based on clocks ensures that sampling is used
correctly; e.g., programs like x + (x when b) that require unbounded
buffers are rejected at compile time.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 10 / 14

Clock system correctness

x = 0 fby (x + 1) 0 1 2 3 4 5 6 8 9 . . .
b T T F F T T T F F . . .
x when b 0 1 4 5 6 . . .

A special type system based on clocks ensures that sampling is used
correctly; e.g., programs like x + (x when b) that require unbounded
buffers are rejected at compile time.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 10 / 14

Clock system correctness

x = 0 fby (x + 1) 0 1 2 3 4 5 6 8 9 . . .
b T T F F T T T F F . . .
x when b 0 1 4 5 6 . . .

A special type system based on clocks ensures that sampling is used
correctly; e.g., programs like x + (x when b) that require unbounded
buffers are rejected at compile time.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 10 / 14

Clock system correctness

x = 0 fby (x + 1) 0 1 2 3 4 5 6 8 9 . . .
b T T F F T T T F F . . .
x when b 0 1 4 5 6 . . .

A special type system based on clocks ensures that sampling is used
correctly; e.g., programs like x + (x when b) that require unbounded
buffers are rejected at compile time.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 10 / 14

Clock system correctness

x = 0 fby (x + 1) 0 1 2 3 4 5 6 8 9 . . .
b T T F F T T T F F . . .
x when b 0 1 4 5 6 . . .

A special type system based on clocks ensures that sampling is used
correctly; e.g., programs like x + (x when b) that require unbounded
buffers are rejected at compile time.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 10 / 14

Clock system correctness

x = 0 fby (x + 1) 0 1 2 3 4 5 6 8 9 . . .
b T T F F T T T F F . . .
x when b 0 1 4 5 6 . . .

A special type system based on clocks ensures that sampling is used
correctly; e.g., programs like x + (x when b) that require unbounded
buffers are rejected at compile time.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 10 / 14

Clock system correctness

x = 0 fby (x + 1) 0 1 2 3 4 5 6 8 9 . . .
b T T F F T T T F F . . .
x when b 0 1 4 5 6 . . .

A special type system based on clocks ensures that sampling is used
correctly; e.g., programs like x + (x when b) that require unbounded
buffers are rejected at compile time.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Bourke, Jeanmaire, Pesin, and Pouzet

tl �, tl bs ` 4ck + B
�, bs ` ck + T · 1 �, bs ` 4 + ‹E› · B

�, bs ` 4ck + ‹E› · B
===

tl �, tl bs ` 4ck + B
�, bs ` ck + F · 1 �, bs ` 4 + ‹› · B

�, bs ` 4ck + ‹› · B
===

Fig. 12. Alignment between a clock (stream bool) and an expression (stream svalue)

NLustre node semantics. The constraint requires that the streams associated to certain expressions
be synchronized with their clock types. This means de�ning a semantic predicate �, bs ` ck + 1 to
associate a clock type with a boolean stream. The clock type • is associated with the base clock of
the context. The stream associated with ck on x is T only if the stream for the subclock ck is T and
the stream for G is ‹T›. It is ‹F› if the stream for ck is F and the stream for G is ‹›, or if the stream
for ck is T and the stream for G is ‹F›. Otherwise it is unde�ned. The stream for ck onot x is de�ned
similarly. The respects-clock predicate presupposes the alignment of certain expressions and their
clock types. The formal de�nition of alignment is shown in �gure 12. There are two cases for an
expression 4 with clock ck. If the expression is present with some value, then it is aligned only if
the clock is T. If the expression is absent, then it is aligned only if the clock is F. The tl operator
destructs a stream and returns its tail. It is lifted implicitly to environments in the obvious way.

In Lustre, on the contrary, the clock types are not interpreted in the semantic model. Rather than
assume the alignment property by explicitly stating it as a requirement in the semantic rules, we
prove that is a consequence of those rules together with the rules for clock typing.

3.2 Correctness of the Clock System
The semantics of NLustre in the existing compiler mandates that source programs satisfy the
alignment property. In addition to eliminating a source of nondeterminism, this property gives
information on presence and absence that is required by the correctness proof of the translation to
imperative code. In this work, rather than assume this property, we prove that it is implied by the
semantic model presented in section 2.2 for any well-clocked, causal Lustre program that has a
semantics. This also solves the main di�culty in proving the transcription pass correct.

T������ 3.1. Given a causal, well-clocked Lustre node with signature

node f (G ck1
1 ,...,G ck=

=) returns (~
ck01
1 ,...,~

ck0<
<)

and semantics f(B1, . . . , B=) + B 01, . . . , B 0< , with bs = base-of(B1, . . . , B=), in any environment� in which
input variables are associated and aligned with input streams, �, bs ` G ck1

1 + B1, . . . , G
ck=
= + B= , and

output variables are associated with output streams, � ` ~1 + B 01, . . . , ~< + B 0< , those output streams
are aligned with the corresponding output clock types, �,1B ` ~ck011 + B 01, . . . , ~ck0<

< + B 0< .

The arbitrary environment, � , in the correctness theorem allows for the interpretation of clocks
which may depend on input and output variables. At each node, we require that the input streams are
aligned. This assumption is satis�ed inductively for a program’s internal nodes and automatically
for its main node whose inputs must be supplied in every cycle. The lemma attests the correctness
of the clock type system, for all Lustre programs, by showing that the static annotations and the
semantic model coincide.

The proof of theorem 3.1 follows by mutual induction on the syntax of expressions and equations
using the principle introduced in section 2.3. Constants are aligned with the base clock of the
enclosing node by de�nition. For variables, an invariant is needed: if G is declared with clock type ck
and associated in the environment � with the stream B , then B is aligned with ck. For inputs, this
invariant is true by assumption; for other variables it is given by the induction hypothesis. The case

ACM Trans. Embedd. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 10 / 14

Clock system correctness – causality and proof

• to prove P(x + y), we need P(x) and P(y)

• induction on equations is not enough: (x, y) = (42, x)
• causal node → acyclic graph

node f(b : bool; x : int) returns (y : int)
var t1, t2 : int;
let

(t1, t2) = if b
then (x + 1, t1)
else (x − 1, −t1);

y = (0 fby y) + (t1 ∗ t2);
tel

b

x

t1

t2

y

• graphs difficult to handle in a proof assistant: 1200 lines of Coq
• induction on a topological ordering of the nodes of the graph
• look only to the left of fby: the fby operator forces alignment
• intricate proof: around 2000 lines of Coq proof script

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 11 / 14

Clock system correctness – causality and proof

• to prove P(x + y), we need P(x) and P(y)
• induction on equations is not enough: (x, y) = (42, x)

• causal node → acyclic graph

node f(b : bool; x : int) returns (y : int)
var t1, t2 : int;
let

(t1, t2) = if b
then (x + 1, t1)
else (x − 1, −t1);

y = (0 fby y) + (t1 ∗ t2);
tel

b

x

t1

t2

y

• graphs difficult to handle in a proof assistant: 1200 lines of Coq
• induction on a topological ordering of the nodes of the graph
• look only to the left of fby: the fby operator forces alignment
• intricate proof: around 2000 lines of Coq proof script

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 11 / 14

Clock system correctness – causality and proof

• to prove P(x + y), we need P(x) and P(y)
• induction on equations is not enough: (x, y) = (42, x)

• causal node → acyclic graph

node f(b : bool; x : int) returns (y : int)
var t1, t2 : int;
let

(t1, t2) = if b
then (x + 1, t1)
else (x − 1, −t1);

y = (0 fby y) + (t1 ∗ t2);
tel

b

x

t1

t2

y

• graphs difficult to handle in a proof assistant: 1200 lines of Coq
• induction on a topological ordering of the nodes of the graph
• look only to the left of fby: the fby operator forces alignment
• intricate proof: around 2000 lines of Coq proof script

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 11 / 14

Clock system correctness – causality and proof

• to prove P(x + y), we need P(x) and P(y)
• induction on equations is not enough: (x, y) = (42, x)

• causal node → acyclic graph

node f(b : bool; x : int) returns (y : int)
var t1, t2 : int;
let

(t1, t2) = if b
then (x + 1, t1)
else (x − 1, −t1);

y = (0 fby y) + (t1 ∗ t2);
tel

b

x

t1

t2

y

• graphs difficult to handle in a proof assistant: 1200 lines of Coq
• induction on a topological ordering of the nodes of the graph
• look only to the left of fby: the fby operator forces alignment
• intricate proof: around 2000 lines of Coq proof script

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 11 / 14

Clock system correctness – causality and proof

• to prove P(x + y), we need P(x) and P(y)
• induction on equations is not enough: (x, y) = (42, x)

• causal node → acyclic graph

node f(b : bool; x : int) returns (y : int)
var t1, t2 : int;
let

(t1, t2) = if b
then (x + 1, t1)
else (x − 1, −t1);

y = (0 fby y) + (t1 ∗ t2);
tel

b

x

t1

t2

y

• graphs difficult to handle in a proof assistant: 1200 lines of Coq
• induction on a topological ordering of the nodes of the graph
• look only to the left of fby: the fby operator forces alignment
• intricate proof: around 2000 lines of Coq proof script

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 11 / 14

Clock system correctness – causality and proof

• to prove P(x + y), we need P(x) and P(y)
• induction on equations is not enough: (x, y) = (42, x)
• causal node → acyclic graph

node f(b : bool; x : int) returns (y : int)
var t1, t2 : int;
let

(t1, t2) = if b
then (x + 1, t1)
else (x − 1, −t1);

y = (0 fby y) + (t1 ∗ t2);
tel

b

x

t1

t2

y

• graphs difficult to handle in a proof assistant: 1200 lines of Coq

• induction on a topological ordering of the nodes of the graph
• look only to the left of fby: the fby operator forces alignment
• intricate proof: around 2000 lines of Coq proof script

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 11 / 14

Clock system correctness – causality and proof

• to prove P(x + y), we need P(x) and P(y)
• induction on equations is not enough: (x, y) = (42, x)
• causal node → acyclic graph

node f(b : bool; x : int) returns (y : int)
var t1, t2 : int;
let

(t1, t2) = if b
then (x + 1, t1)
else (x − 1, −t1);

y = (0 fby y) + (t1 ∗ t2);
tel

b

x

t1

t2

y

• graphs difficult to handle in a proof assistant: 1200 lines of Coq
• induction on a topological ordering of the nodes of the graph
• look only to the left of fby: the fby operator forces alignment

• intricate proof: around 2000 lines of Coq proof script

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 11 / 14

Clock system correctness – causality and proof

• to prove P(x + y), we need P(x) and P(y)
• induction on equations is not enough: (x, y) = (42, x)
• causal node → acyclic graph

node f(b : bool; x : int) returns (y : int)
var t1, t2 : int;
let

(t1, t2) = if b
then (x + 1, t1)
else (x − 1, −t1);

y = (0 fby y) + (t1 ∗ t2);
tel

b

x

t1

t2

y

• graphs difficult to handle in a proof assistant: 1200 lines of Coq
• induction on a topological ordering of the nodes of the graph
• look only to the left of fby: the fby operator forces alignment
• intricate proof: around 2000 lines of Coq proof script

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 11 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 12 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 12 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 12 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 12 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

only defined when ck = true

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 12 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

only defined when ck = true

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.5.2.2 Function calls

Constraints

1 The expression that denotes the called function80) shall have type pointer to function

returning void or returning an object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the

number of arguments shall agree with the number of parameters. Each argument shall

have a type such that its value may be assigned to an object with the unqualified version

of the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses () containing a possibly empty, comma-

separated list of expressions is a function call. The postfix expression denotes the called

function. The list of expressions specifies the arguments to the function.

4 An argument may be an expression of any object type. In preparing for the call to a

function, the arguments are evaluated, and each parameter is assigned the value of the

corresponding argument.81)

5 If the expression that denotes the called function has type pointer to function returning an

object type, the function call expression has the same type as that object type, and has the

value determined as specified in 6.8.6.4. Otherwise, the function call has type void. If

an attempt is made to modify the result of a function call or to access it after the next

sequence point, the behavior is undefined.

6 If the expression that denotes the called function has a type that does not include a

prototype, the integer promotions are performed on each argument, and arguments that

have type float are promoted to double. These are called the default argument

promotions. If the number of arguments does not equal the number of parameters, the

behavior is undefined. If the function is defined with a type that includes a prototype, and

either the prototype ends with an ellipsis (, ...) or the types of the arguments after

promotion are not compatible with the types of the parameters, the behavior is undefined.

If the function is defined with a type that does not include a prototype, and the types of

the arguments after promotion are not compatible with those of the parameters after

promotion, the behavior is undefined, except for the following cases:

80) Most often, this is the result of converting an identifier that is a function designator.

81) A function may change the values of its parameters, but these changes cannot affect the values of the

arguments. On the other hand, it is possible to pass a pointer to an object, and the function may

change the value of the object pointed to. A parameter declared to have array or function type is

adjusted to have a pointer type as described in 6.9.1.

§6.5.2.2
Language

71

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.5.2.2 Function calls

Constraints

1 The expression that denotes the called function80) shall have type pointer to function

returning void or returning an object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the

number of arguments shall agree with the number of parameters. Each argument shall

have a type such that its value may be assigned to an object with the unqualified version

of the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses () containing a possibly empty, comma-

separated list of expressions is a function call. The postfix expression denotes the called

function. The list of expressions specifies the arguments to the function.

4 An argument may be an expression of any object type. In preparing for the call to a

function, the arguments are evaluated, and each parameter is assigned the value of the

corresponding argument.81)

5 If the expression that denotes the called function has type pointer to function returning an

object type, the function call expression has the same type as that object type, and has the

value determined as specified in 6.8.6.4. Otherwise, the function call has type void. If

an attempt is made to modify the result of a function call or to access it after the next

sequence point, the behavior is undefined.

6 If the expression that denotes the called function has a type that does not include a

prototype, the integer promotions are performed on each argument, and arguments that

have type float are promoted to double. These are called the default argument

promotions. If the number of arguments does not equal the number of parameters, the

behavior is undefined. If the function is defined with a type that includes a prototype, and

either the prototype ends with an ellipsis (, ...) or the types of the arguments after

promotion are not compatible with the types of the parameters, the behavior is undefined.

If the function is defined with a type that does not include a prototype, and the types of

the arguments after promotion are not compatible with those of the parameters after

promotion, the behavior is undefined, except for the following cases:

80) Most often, this is the result of converting an identifier that is a function designator.

81) A function may change the values of its parameters, but these changes cannot affect the values of the

arguments. On the other hand, it is possible to pass a pointer to an object, and the function may

change the value of the object pointed to. A parameter declared to have array or function type is

adjusted to have a pointer type as described in 6.9.1.

§6.5.2.2
Language

71

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 12 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

only defined when ck = true

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.5.2.2 Function calls

Constraints

1 The expression that denotes the called function80) shall have type pointer to function

returning void or returning an object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the

number of arguments shall agree with the number of parameters. Each argument shall

have a type such that its value may be assigned to an object with the unqualified version

of the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses () containing a possibly empty, comma-

separated list of expressions is a function call. The postfix expression denotes the called

function. The list of expressions specifies the arguments to the function.

4 An argument may be an expression of any object type. In preparing for the call to a

function, the arguments are evaluated, and each parameter is assigned the value of the

corresponding argument.81)

5 If the expression that denotes the called function has type pointer to function returning an

object type, the function call expression has the same type as that object type, and has the

value determined as specified in 6.8.6.4. Otherwise, the function call has type void. If

an attempt is made to modify the result of a function call or to access it after the next

sequence point, the behavior is undefined.

6 If the expression that denotes the called function has a type that does not include a

prototype, the integer promotions are performed on each argument, and arguments that

have type float are promoted to double. These are called the default argument

promotions. If the number of arguments does not equal the number of parameters, the

behavior is undefined. If the function is defined with a type that includes a prototype, and

either the prototype ends with an ellipsis (, ...) or the types of the arguments after

promotion are not compatible with the types of the parameters, the behavior is undefined.

If the function is defined with a type that does not include a prototype, and the types of

the arguments after promotion are not compatible with those of the parameters after

promotion, the behavior is undefined, except for the following cases:

80) Most often, this is the result of converting an identifier that is a function designator.

81) A function may change the values of its parameters, but these changes cannot affect the values of the

arguments. On the other hand, it is possible to pass a pointer to an object, and the function may

change the value of the object pointed to. A parameter declared to have array or function type is

adjusted to have a pointer type as described in 6.9.1.

§6.5.2.2
Language

71

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.5.2.2 Function calls

Constraints

1 The expression that denotes the called function80) shall have type pointer to function

returning void or returning an object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the

number of arguments shall agree with the number of parameters. Each argument shall

have a type such that its value may be assigned to an object with the unqualified version

of the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses () containing a possibly empty, comma-

separated list of expressions is a function call. The postfix expression denotes the called

function. The list of expressions specifies the arguments to the function.

4 An argument may be an expression of any object type. In preparing for the call to a

function, the arguments are evaluated, and each parameter is assigned the value of the

corresponding argument.81)

5 If the expression that denotes the called function has type pointer to function returning an

object type, the function call expression has the same type as that object type, and has the

value determined as specified in 6.8.6.4. Otherwise, the function call has type void. If

an attempt is made to modify the result of a function call or to access it after the next

sequence point, the behavior is undefined.

6 If the expression that denotes the called function has a type that does not include a

prototype, the integer promotions are performed on each argument, and arguments that

have type float are promoted to double. These are called the default argument

promotions. If the number of arguments does not equal the number of parameters, the

behavior is undefined. If the function is defined with a type that includes a prototype, and

either the prototype ends with an ellipsis (, ...) or the types of the arguments after

promotion are not compatible with the types of the parameters, the behavior is undefined.

If the function is defined with a type that does not include a prototype, and the types of

the arguments after promotion are not compatible with those of the parameters after

promotion, the behavior is undefined, except for the following cases:

80) Most often, this is the result of converting an identifier that is a function designator.

81) A function may change the values of its parameters, but these changes cannot affect the values of the

arguments. On the other hand, it is possible to pass a pointer to an object, and the function may

change the value of the object pointed to. A parameter declared to have array or function type is

adjusted to have a pointer type as described in 6.9.1.

§6.5.2.2
Language

71

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N12566.3.2 Other operands
6.3.2.1 Lvalues, arrays, and function designators1 An lvalue is an expression with an object type or an incomplete type other than void;53)

if an lvalue does not designate an object when it is evaluated, the behavior is undefined.

When an object is said to have a particular type, the type is specified by the lvalue used to

designate the object. A modifiable lvalue is an lvalue that does not have array type, does

not have an incomplete type, does not have a const-qualified type, and if it is a structure

or union, does not have any member (including, recursively, any member or element of

all contained aggregates or unions) with a const-qualified type.2 Except when it is the operand of the sizeof operator, the unary & operator, the ++

operator, the -- operator, or the left operand of the . operator or an assignment operator,

an lvalue that does not have array type is converted to the value stored in the designated

object (and is no longer an lvalue). If the lvalue has qualified type, the value has the

unqualified version of the type of the lvalue; otherwise, the value has the type of the

lvalue. If the lvalue has an incomplete type and does not have array type, the behavior is

undefined.
3 Except when it is the operand of the sizeof operator or the unary & operator, or is a

string literal used to initialize an array, an expression that has type ‘‘array of type’’ is

converted to an expression with type ‘‘pointer to type’’ that points to the initial element of

the array object and is not an lvalue. If the array object has register storage class, the

behavior is undefined.
4 A function designator is an expression that has function type. Except when it is the

operand of the sizeof operator54) or the unary & operator, a function designator with

type ‘‘function returning type’’ is converted to an expression that has type ‘‘pointer to

function returning type’’.
Forward references: address and indirection operators (6.5.3.2), assignment operators

(6.5.16), common definitions <stddef.h> (7.17), initialization (6.7.8), postfix

increment and decrement operators (6.5.2.4), prefix increment and decrement operators

(6.5.3.1), the sizeof operator (6.5.3.4), structure and union members (6.5.2.3).
53) The name ‘‘lvalue’’ comes originally from the assignment expression E1 = E2, in which the left

operand E1 is required to be a (modifiable) lvalue. It is perhaps better considered as representing an

object ‘‘locator value’’. What is sometimes called ‘‘rvalue’’ is in this International Standard described

as the ‘‘value of an expression’’.
An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary

expression that is a pointer to an object, *E is an lvalue that designates the object to which E points.

54) Because this conversion does not occur, the operand of the sizeof operator remains a function

designator and violates the constraint in 6.5.3.4.
46

Language
§6.3.2.1

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N12566.3.2 Other operands
6.3.2.1 Lvalues, arrays, and function designators1 An lvalue is an expression with an object type or an incomplete type other than void;53)

if an lvalue does not designate an object when it is evaluated, the behavior is undefined.

When an object is said to have a particular type, the type is specified by the lvalue used to

designate the object. A modifiable lvalue is an lvalue that does not have array type, does

not have an incomplete type, does not have a const-qualified type, and if it is a structure

or union, does not have any member (including, recursively, any member or element of

all contained aggregates or unions) with a const-qualified type.2 Except when it is the operand of the sizeof operator, the unary & operator, the ++

operator, the -- operator, or the left operand of the . operator or an assignment operator,

an lvalue that does not have array type is converted to the value stored in the designated

object (and is no longer an lvalue). If the lvalue has qualified type, the value has the

unqualified version of the type of the lvalue; otherwise, the value has the type of the

lvalue. If the lvalue has an incomplete type and does not have array type, the behavior is

undefined.
3 Except when it is the operand of the sizeof operator or the unary & operator, or is a

string literal used to initialize an array, an expression that has type ‘‘array of type’’ is

converted to an expression with type ‘‘pointer to type’’ that points to the initial element of

the array object and is not an lvalue. If the array object has register storage class, the

behavior is undefined.
4 A function designator is an expression that has function type. Except when it is the

operand of the sizeof operator54) or the unary & operator, a function designator with

type ‘‘function returning type’’ is converted to an expression that has type ‘‘pointer to

function returning type’’.
Forward references: address and indirection operators (6.5.3.2), assignment operators

(6.5.16), common definitions <stddef.h> (7.17), initialization (6.7.8), postfix

increment and decrement operators (6.5.2.4), prefix increment and decrement operators

(6.5.3.1), the sizeof operator (6.5.3.4), structure and union members (6.5.2.3).
53) The name ‘‘lvalue’’ comes originally from the assignment expression E1 = E2, in which the left

operand E1 is required to be a (modifiable) lvalue. It is perhaps better considered as representing an

object ‘‘locator value’’. What is sometimes called ‘‘rvalue’’ is in this International Standard described

as the ‘‘value of an expression’’.
An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary

expression that is a pointer to an object, *E is an lvalue that designates the object to which E points.

54) Because this conversion does not occur, the operand of the sizeof operator remains a function

designator and violates the constraint in 6.5.3.4.
46

Language
§6.3.2.1

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 12 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

only defined when ck = true

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.5.2.2 Function calls

Constraints

1 The expression that denotes the called function80) shall have type pointer to function

returning void or returning an object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the

number of arguments shall agree with the number of parameters. Each argument shall

have a type such that its value may be assigned to an object with the unqualified version

of the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses () containing a possibly empty, comma-

separated list of expressions is a function call. The postfix expression denotes the called

function. The list of expressions specifies the arguments to the function.

4 An argument may be an expression of any object type. In preparing for the call to a

function, the arguments are evaluated, and each parameter is assigned the value of the

corresponding argument.81)

5 If the expression that denotes the called function has type pointer to function returning an

object type, the function call expression has the same type as that object type, and has the

value determined as specified in 6.8.6.4. Otherwise, the function call has type void. If

an attempt is made to modify the result of a function call or to access it after the next

sequence point, the behavior is undefined.

6 If the expression that denotes the called function has a type that does not include a

prototype, the integer promotions are performed on each argument, and arguments that

have type float are promoted to double. These are called the default argument

promotions. If the number of arguments does not equal the number of parameters, the

behavior is undefined. If the function is defined with a type that includes a prototype, and

either the prototype ends with an ellipsis (, ...) or the types of the arguments after

promotion are not compatible with the types of the parameters, the behavior is undefined.

If the function is defined with a type that does not include a prototype, and the types of

the arguments after promotion are not compatible with those of the parameters after

promotion, the behavior is undefined, except for the following cases:

80) Most often, this is the result of converting an identifier that is a function designator.

81) A function may change the values of its parameters, but these changes cannot affect the values of the

arguments. On the other hand, it is possible to pass a pointer to an object, and the function may

change the value of the object pointed to. A parameter declared to have array or function type is

adjusted to have a pointer type as described in 6.9.1.

§6.5.2.2
Language

71

WG14/N1256 Committee Draft — Septermber 7, 2007 ISO/IEC 9899:TC3

6.5.2.2 Function calls

Constraints

1 The expression that denotes the called function80) shall have type pointer to function

returning void or returning an object type other than an array type.

2 If the expression that denotes the called function has a type that includes a prototype, the

number of arguments shall agree with the number of parameters. Each argument shall

have a type such that its value may be assigned to an object with the unqualified version

of the type of its corresponding parameter.

Semantics

3 A postfix expression followed by parentheses () containing a possibly empty, comma-

separated list of expressions is a function call. The postfix expression denotes the called

function. The list of expressions specifies the arguments to the function.

4 An argument may be an expression of any object type. In preparing for the call to a

function, the arguments are evaluated, and each parameter is assigned the value of the

corresponding argument.81)

5 If the expression that denotes the called function has type pointer to function returning an

object type, the function call expression has the same type as that object type, and has the

value determined as specified in 6.8.6.4. Otherwise, the function call has type void. If

an attempt is made to modify the result of a function call or to access it after the next

sequence point, the behavior is undefined.

6 If the expression that denotes the called function has a type that does not include a

prototype, the integer promotions are performed on each argument, and arguments that

have type float are promoted to double. These are called the default argument

promotions. If the number of arguments does not equal the number of parameters, the

behavior is undefined. If the function is defined with a type that includes a prototype, and

either the prototype ends with an ellipsis (, ...) or the types of the arguments after

promotion are not compatible with the types of the parameters, the behavior is undefined.

If the function is defined with a type that does not include a prototype, and the types of

the arguments after promotion are not compatible with those of the parameters after

promotion, the behavior is undefined, except for the following cases:

80) Most often, this is the result of converting an identifier that is a function designator.

81) A function may change the values of its parameters, but these changes cannot affect the values of the

arguments. On the other hand, it is possible to pass a pointer to an object, and the function may

change the value of the object pointed to. A parameter declared to have array or function type is

adjusted to have a pointer type as described in 6.9.1.

§6.5.2.2
Language

71

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N12566.3.2 Other operands
6.3.2.1 Lvalues, arrays, and function designators1 An lvalue is an expression with an object type or an incomplete type other than void;53)

if an lvalue does not designate an object when it is evaluated, the behavior is undefined.

When an object is said to have a particular type, the type is specified by the lvalue used to

designate the object. A modifiable lvalue is an lvalue that does not have array type, does

not have an incomplete type, does not have a const-qualified type, and if it is a structure

or union, does not have any member (including, recursively, any member or element of

all contained aggregates or unions) with a const-qualified type.2 Except when it is the operand of the sizeof operator, the unary & operator, the ++

operator, the -- operator, or the left operand of the . operator or an assignment operator,

an lvalue that does not have array type is converted to the value stored in the designated

object (and is no longer an lvalue). If the lvalue has qualified type, the value has the

unqualified version of the type of the lvalue; otherwise, the value has the type of the

lvalue. If the lvalue has an incomplete type and does not have array type, the behavior is

undefined.
3 Except when it is the operand of the sizeof operator or the unary & operator, or is a

string literal used to initialize an array, an expression that has type ‘‘array of type’’ is

converted to an expression with type ‘‘pointer to type’’ that points to the initial element of

the array object and is not an lvalue. If the array object has register storage class, the

behavior is undefined.
4 A function designator is an expression that has function type. Except when it is the

operand of the sizeof operator54) or the unary & operator, a function designator with

type ‘‘function returning type’’ is converted to an expression that has type ‘‘pointer to

function returning type’’.
Forward references: address and indirection operators (6.5.3.2), assignment operators

(6.5.16), common definitions <stddef.h> (7.17), initialization (6.7.8), postfix

increment and decrement operators (6.5.2.4), prefix increment and decrement operators

(6.5.3.1), the sizeof operator (6.5.3.4), structure and union members (6.5.2.3).
53) The name ‘‘lvalue’’ comes originally from the assignment expression E1 = E2, in which the left

operand E1 is required to be a (modifiable) lvalue. It is perhaps better considered as representing an

object ‘‘locator value’’. What is sometimes called ‘‘rvalue’’ is in this International Standard described

as the ‘‘value of an expression’’.
An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary

expression that is a pointer to an object, *E is an lvalue that designates the object to which E points.

54) Because this conversion does not occur, the operand of the sizeof operator remains a function

designator and violates the constraint in 6.5.3.4.
46

Language
§6.3.2.1

ISO/IEC 9899:TC3 Committee Draft — Septermber 7, 2007 WG14/N12566.3.2 Other operands
6.3.2.1 Lvalues, arrays, and function designators1 An lvalue is an expression with an object type or an incomplete type other than void;53)

if an lvalue does not designate an object when it is evaluated, the behavior is undefined.

When an object is said to have a particular type, the type is specified by the lvalue used to

designate the object. A modifiable lvalue is an lvalue that does not have array type, does

not have an incomplete type, does not have a const-qualified type, and if it is a structure

or union, does not have any member (including, recursively, any member or element of

all contained aggregates or unions) with a const-qualified type.2 Except when it is the operand of the sizeof operator, the unary & operator, the ++

operator, the -- operator, or the left operand of the . operator or an assignment operator,

an lvalue that does not have array type is converted to the value stored in the designated

object (and is no longer an lvalue). If the lvalue has qualified type, the value has the

unqualified version of the type of the lvalue; otherwise, the value has the type of the

lvalue. If the lvalue has an incomplete type and does not have array type, the behavior is

undefined.
3 Except when it is the operand of the sizeof operator or the unary & operator, or is a

string literal used to initialize an array, an expression that has type ‘‘array of type’’ is

converted to an expression with type ‘‘pointer to type’’ that points to the initial element of

the array object and is not an lvalue. If the array object has register storage class, the

behavior is undefined.
4 A function designator is an expression that has function type. Except when it is the

operand of the sizeof operator54) or the unary & operator, a function designator with

type ‘‘function returning type’’ is converted to an expression that has type ‘‘pointer to

function returning type’’.
Forward references: address and indirection operators (6.5.3.2), assignment operators

(6.5.16), common definitions <stddef.h> (7.17), initialization (6.7.8), postfix

increment and decrement operators (6.5.2.4), prefix increment and decrement operators

(6.5.3.1), the sizeof operator (6.5.3.4), structure and union members (6.5.2.3).
53) The name ‘‘lvalue’’ comes originally from the assignment expression E1 = E2, in which the left

operand E1 is required to be a (modifiable) lvalue. It is perhaps better considered as representing an

object ‘‘locator value’’. What is sometimes called ‘‘rvalue’’ is in this International Standard described

as the ‘‘value of an expression’’.
An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary

expression that is a pointer to an object, *E is an lvalue that designates the object to which E points.

54) Because this conversion does not occur, the operand of the sizeof operator remains a function

designator and violates the constraint in 6.5.3.4.
46

Language
§6.3.2.1

• Already formalized in
CompCert’s Clight semantics
• Appears as a proof obligation

in our end-to-end proof

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 12 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 13 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

1. Add validity assertions during compilation:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, 〈ck〉, elab$4)

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 13 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

1. Add validity assertions during compilation:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, 〈ck〉, elab$4)

2. Extra compilation pass to initialize variables:
if (ck) {

elab$4 := exp;
} else {

elab$4 := 0;
};
time := current(i1).step(0, 〈ck〉, 〈elab$4〉)
Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 13 / 14

Node Subsampling

node current(d : int; ck : bool; x : int when ck)
always present only present when ck is

Compile an instance of this node to Obc:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, ck, elab$4)

1. Add validity assertions during compilation:
if (ck) {

elab$4 := exp;
};
time := current(i1).step(0, 〈ck〉, elab$4)

2. Extra compilation pass to initialize variables:
if (ck) {

elab$4 := exp;
} else {

elab$4 := 0;
};
time := current(i1).step(0, 〈ck〉, 〈elab$4〉)

• Guarantees that variables in
function calls are always
defined.
• Recover Obc Clight proof
• Programs without

subsampling are unchanged

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 13 / 14

Conclusion

Untyped
Lustre

Lustre NLustre

Stc

Obc

Clight

Assembly

transcription

unnesting &
distribution

expression
initialization

argument
initialization

• More expressive source language and associated
semantic model
• Formally verified normalization algorithm

» Separate concerns and proofs over 3 functions
» Requires correctness of clock system
• Allow node subsampling in source language

» Add “validity assertions” and explicit initialization

• End-to-end machine-checked proof connecting the
dataflow semantics of an expressive source
language with the low-level assembly semantics.

• Source code and online demo: https://velus.inria.fr

res F F F T F F F F F · · ·
n 6 6 6 6 6 6 6 6 6 · · ·
cpt 6 5 4 6 5 4 3 2 1 · · ·

every trigger {
read inputs;
calculate;
write outputs;

}

Bourke, Jeanmaire, Pesin, Pouzet Verified Lustre Normalization with Node Subsampling 14 / 14

https://velus.inria.fr

	Normalization
	Clock System and its correctness
	Argument initialization
	Conclusion

